Giúp tôi giải toán và làm văn


Kurokawa Neko 31/05/2018 lúc 14:50
Báo cáo sai phạm

Ta thấy: \(a+b\le1\Leftrightarrow\hept{\begin{cases}a\le1-b\\b\le1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a\le2-b\\1+b\le2-a\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b}\ge\frac{a}{2-a}\\\frac{b}{1+a}\ge\frac{b}{2-b}\end{cases}}\Rightarrow\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{a}{2-a}+\frac{b}{2-b}\)

\(\Rightarrow S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\ge\frac{a}{2-a}+\frac{b}{2-b}+\frac{1}{a+b}\)

\(=\frac{2}{2-a}-1+\frac{2}{2-b}-1+\frac{1}{a+b}=\frac{2}{2-a}+\frac{2}{2-b}+\frac{1}{a+b}-2\)

\(=2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\)

Áp dụng bất đẳng thức sau: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{4-\left(a+b\right)+2\left(a+b\right)}=\frac{9}{4+a+b}\)

Lại có: \(a+b\le1\Rightarrow4+a+b\le5\Rightarrow\frac{9}{4+a+b}\ge\frac{9}{5}\)

\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{5}\Leftrightarrow2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\ge\frac{8}{5}\)

\(\Rightarrow S\ge\frac{8}{5}.\)

Vậy \(Min_S=\frac{8}{5}.\)Dấu "=" xảy ra khi \(a=b=\frac{2}{5}.\)

Đọc tiếp...
Trần Thị Loan Quản lý 29/06/2015 lúc 15:35
Báo cáo sai phạm

b) http://olm.vn/hoi-dap/question/113503.html

a) \(k=\frac{abc}{a+b+c}=\frac{100a+10b+c}{a+b+c}\le\frac{100a+100b+100c}{a+b+c}=100\)

=> k lớn nhất = 100 khi 10b = 100b và c = 100c

=> b = 0 và c = 0 

=> tỉ số k lớn nhất khi b = c = 0; a tùy ý  => các số đó là 100; 200; ...900

Đọc tiếp...
Lê Chí Cường 29/06/2015 lúc 15:31
Báo cáo sai phạm

abc là tích của 3 số hay là số có 3 chữ số vậy bạn.

Đọc tiếp...
thien ty tfboys 01/06/2015 lúc 11:24
Báo cáo sai phạm

sorry lam lon

M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy

Do  x,y > 0 nên áp dụng cô si cho 5 số dương ta có :

M  ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3)   (*)

Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :

≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2

Dau " ≥ " khi 

{x^2/4xy = 4y^2/4xy

{x^3=8y^3

=>x  ≥  2y

Vậy :​x  ≥ 2y

Đọc tiếp...
Đinh Tuấn Việt 13/05/2015 lúc 10:57
Báo cáo sai phạm

a) \(\frac{a}{b}\) có GTLN \(\Leftrightarrow\) a lớn nhất và b nhỏ nhất.

Mà b \(\ne\) 0 vì b là mẫu của phân số nên : a = 42 ; b= 7.

Vậy \(\frac{a}{b}\) có GTLN là \(\frac{42}{7}=6\)

b) \(\frac{a-b}{a+b}\) dương có GTNN \(\Leftrightarrow\) a - b nhỏ nhất và a + b lớn nhất

\(\Leftrightarrow\) a -b = 7 (= 7 - 0)  và a + b = 77 (= 42 + 35) 

\(\Leftrightarrow\) a = 42 và b = 35

Vậy \(\frac{a-b}{a+b}\) dương có GTNN là \(\frac{7}{77}=\frac{1}{11}\)

       Online_Maths chọn câu trả lời này đi !

Đọc tiếp...
tran anh vu 01/08/2016 lúc 18:39
Báo cáo sai phạm

trong bài toán này ta thấy hiệu của a và b là số dương nhỏ nhất trong tập hợp khác 0 là 7.tất nhiên a+b cũng là số dương lớn nhất nên kết luận hai số có tổng lớn nhất trong tập hợp là 35 và 42 vị a-b=7 nên a>b. so a=42,b=35

Đọc tiếp...
Seu Vuon 04/05/2015 lúc 18:40
Báo cáo sai phạm

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)

Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)

Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

Đọc tiếp...
Wrecking Ball 16/05/2018 lúc 22:34
Báo cáo sai phạm

Áp dụng (a + b)> 4, ta có:

\(\left(x+y+z\right)^2\ge4\left(x+y\right)z\text{ hay }1\ge4\left(x+y\right)z\left(1\right)\) (vì x + y + z = 1) 

\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4\left(x+y\right)^2\frac{z}{xyz}\left(\text{Nhân hai vế (1) với: }\frac{\left(x+y\right)}{xyz}\right)\)

\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4.\frac{4xyz}{xyz}=16\left(\text{vì: }\left(x+y\right)^2\ge4xy\right)\)

\(\Rightarrow MIN_A=16\Leftrightarrow x=y;x+y=z;x+y+z=1\)

\(\Rightarrow x=y=\frac{1}{4};z=\frac{1}{2}\)

Đọc tiếp...
vô danh 07/05/2015 lúc 17:19
Báo cáo sai phạm

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z

hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)

Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)

Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ‍≥16

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

Đọc tiếp...
trieu dang 21/06/2015 lúc 22:18
Báo cáo sai phạm

1)a)x^2-x+1=x2-2.x.1/2+1/4 +3/4

=(x-1/2)2+3/4\(\ge\)3/4(vì (x-1/2)2\(\ge\)0)

dấu = xảy ra khi:

x-1/2=0

x=1/2

vậy GTNN của x^2-x+1 là 3/4 tại x=1/2

b)-x^2+x-y^2-4y-6

=(-x2+2x.1/2-1/4)+(-y2-4y-4)-7/4

=-(x2-2x.1/2+1/4)-(y2+4y+4)-7/4

=-(x-1/2)2-(y+2)2-7/4\(\le\)-7/4( vì -(x-1/2)2\(\le\)0;-(y+2)2\(\le\)0)

dấu = xảy ra khi:

x-1/2=0 và y+2=0

x=1/2 và y=-2

vậy GTLN của -x^2+x-y^2-4y-6 là -7/4 tại x=1/2 và y=-2

Đọc tiếp...
At the speed of light CTV 14/05/2018 lúc 19:38
Báo cáo sai phạm

Ta có : \(A=\frac{x^2-2x+2014}{x^2}=\frac{2014x^2-4028x+2014^2}{x^2}=\frac{2013x^2+\left(x^2-4028x+2014^2\right)}{x^2}\)

\(=\frac{2013x^2}{x^2}+\frac{\left(x-2014\right)^2}{x^2}=2013+\frac{\left(x-2014\right)^2}{x^2}\)

Vì \(\frac{\left(x-2014\right)^2}{x^2}\ge0\forall x\)

Nên : \(A=2013+\frac{\left(x-2014\right)^2}{x^2}\ge2013\forall x\)

Vậy Amin = 2013 khi x = 2014

Đọc tiếp...
nguyễn thị lan hương 14/05/2018 lúc 19:36
Báo cáo sai phạm

\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)

đặt 1/x=t ta có

\(A=1-2t+2014t^2\)

   \(=2014\left(t^2-\frac{1}{1007}+\frac{1}{2014}\right)\)

   =\(2014[\left(t-\frac{1}{2014}\right)^2-\left(\frac{1}{2014}\right)^2+\frac{1}{2014}]\)

=\(2014\left(t-\frac{1}{2014}\right)^2+\frac{2013}{2014}\)\(\ge\frac{2013}{2014}\)

dấu''='' xảy ra khi t-1/2014=0 <=>1/x=1/2014=>x=2014

Đọc tiếp...
lan vũ thị 16/09/2017 lúc 19:40
Báo cáo sai phạm

sao mk ko nhìn thấy câu trả lời vậy bn

Đọc tiếp...
giang ho dai ca Hiệp sĩ 29/05/2015 lúc 15:33
Báo cáo sai phạm

M = (1 + \(\frac{1}{x}\))(1 + \(\frac{1}{y}\)) . (1 - \(\frac{1}{x}\))(1 - \(\frac{1}{y}\)
= (1 + \(\frac{1}{x}\))(1 +\(\frac{1}{y}\) ) . \(\frac{\left(x-1\right)\left(y-1\right)}{x.y}\)
= (1 + \(\frac{1}{x}\))(1 + \(\frac{1}{y}\)) . \(\frac{\left(-x\right)\left(-y\right)}{x.y}\)
= (1 + \(\frac{1}{x}\))(1 + \(\frac{1}{y}\)
= 1 + \(\frac{1}{x.y}\) + (\(\frac{1}{x}+\frac{1}{y}\)) = 1 + \(\frac{1}{x.y}\) + \(\frac{x+y}{x.y}\)
= 1 + \(\frac{1}{x.y}\) + \(\frac{1}{x.y}\) = 1 + \(\frac{2}{x.y}\)
Áp dụng bđt: xy \(\le\) \(\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\) 
=> M ≥ 1 + \(2:\frac{1}{4}\)= 9 
Min M = 9 <=> x = y = 1/2

Đọc tiếp...
Trần Thị Loan Quản lý 05/05/2015 lúc 21:38
Báo cáo sai phạm

3x + y = 1 => y = 1 - 3x

=> M =  3x2 + (1 - 3x)2 = 3x2 + 1 - 6x + 9x2 = 12x2 - 6x + 1

= 12.(x2 - \(\frac{1}{2}\).x + \(\frac{1}{12}\)) = 12. [(x2 - 2.x.\(\frac{1}{4}\) + \(\frac{1}{16}\)) - \(\frac{1}{16}\)\(\frac{1}{12}\)]

= 12. (x - \(\frac{1}{4}\))2 -  \(\frac{12}{16}\) + 1 = 12. (x - \(\frac{1}{4}\))2 + \(\frac{1}{4}\) \(\ge\) 12. 0 + \(\frac{1}{4}\) = \(\frac{1}{4}\) với mọi x 

Vậy Min M = \(\frac{1}{4}\) khi x = \(\frac{1}{4}\)

Đọc tiếp...
Nguyễn Thị BÍch Hậu 21/05/2015 lúc 22:07
Báo cáo sai phạm

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

Đọc tiếp...
Nguyễn Thị BÍch Hậu 21/05/2015 lúc 22:18
Báo cáo sai phạm

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

Đọc tiếp...
Đinh quang hiệp 17/06 lúc 17:56
Báo cáo sai phạm

4    \(x^2+\frac{2}{x}=x^2+\frac{1}{x}+\frac{1}{x}=\frac{x^2}{1}+\frac{1^2}{x}+\frac{1}{x}>=\frac{\left(x+1\right)^2}{x+1}+\frac{1}{x}\)(bđt cauchy shawazt dạng engal)

\(=x+1+\frac{1}{x}>=2\sqrt{x\cdot\frac{1}{x}}+1=2+1=3\)(bđt cosi)

dấu = xảy ra khi x=1

vậy min P là 3 khi x=1

5    \(2x+\frac{1}{x^2}=\frac{2x^3+1}{x^2}=\frac{x^3+x^3+1}{x^2}>=\frac{3\sqrt[3]{x^3\cdot x^3}}{x^2}=\frac{3\sqrt[3]{x^6}}{x^2}=\frac{3x^2}{x^2}=3\)(bđt cosi)

dấu = xảy ra khi x=1

vậy min 2x+1/x^2 là 3 khi x=1

8     \(\frac{2x}{x^2+1}< =\frac{x^2+1}{x^2+1}=1\)

dấu = xảy ra khi x=1

\(\frac{2x}{x^2+1}=\frac{x^2+2x+1-x^2-1}{x^2+1}=\frac{\left(x+1\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1>=0-1=-1\)

dấu = xảy ra khi x=-1

vậy max A là 1 khi x=1

     min A là -1 khi x=-1

Đọc tiếp...
Nguyễn Quang Trung CTV 21/02/2017 lúc 18:37
Báo cáo sai phạm

Ta có : n + 1 chai hết cho n - 3

<=> n - 3 + 4 chia hết cho n - 3

=> 4 chia hết cho n - 3

=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}

Ta có bảng :

n - 3-4-2-1124
n-112457
Đọc tiếp...
Vũ vân 13/01/2017 lúc 18:09
Báo cáo sai phạm

a) n=4;5;7

b)n=4

c)n=7

Đọc tiếp...
Nguyễn Tuấn Việt 07/05/2018 lúc 16:57
Báo cáo sai phạm

a) n=4;5;7

b) n=4

c) n=7

Đọc tiếp...
Trần Thị Loan Quản lý 25/07/2015 lúc 09:41
Báo cáo sai phạm

A(x) = -3. (x2 - \(\frac{5}{3}\)x - \(\frac{1}{3}\)) = - 3. [(x- 2.x. \(\frac{5}{6}\) + \(\frac{25}{36}\)) - \(\frac{37}{36}\)]= -3. (x - \(\frac{5}{6}\))2 + \(\frac{37}{12}\) \(\le\) (-3).0 + \(\frac{37}{12}\) = \(\frac{37}{12}\) với mọi x

=> A lớn nhất = \(\frac{37}{12}\) khi x - \(\frac{5}{6}\) = 0 <=> x = \(\frac{5}{6}\)

+) Khi lấy x rất lớn thì x 2 rất lớn => -3x2 rất nhỏ và 3x2 lớn hơn 5x => -3x2 rất nhỏ và nhỏ hơn 5x 

=> A càng nhỏ khi x lấy giá trị càng lớn

=> A không tồn tại giá trị nhỏ nhất

 

 

Đọc tiếp...
Đinh Đức Hùng CTV 21/07/2017 lúc 11:03
Báo cáo sai phạm

Ta có :

\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2

\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2

Đọc tiếp...
Nhân Nghĩa 01/05/2018 lúc 21:04
Báo cáo sai phạm

123456789

Đọc tiếp...
Vũ Xuân Phương 27/03/2018 lúc 16:04
Báo cáo sai phạm

có thể giải bài này theo\(\Delta\)

Đọc tiếp...
Biêtdongsaigon 09/08/2015 lúc 19:08
Báo cáo sai phạm

Ta có:

\(\frac{20n+13}{4n+3}=\frac{20n+15}{4n+3}-\frac{2}{4n+3}=5-\frac{2}{4n+3}\)

Để \(5-\frac{2}{4n+3}\)có giá trị nhỏ nhất

=>\(\frac{2}{4n+3}\)có giá trị lớn nhất

=>4n+3 là số tự nhiên nhỏ nhất có thể

=>4n+3=3

=>n=0

\(\frac{2}{4n+3}=\frac{2}{0+3}=\frac{2}{3}\)

=>\(5-\frac{2}{3}=\frac{15}{3}-\frac{2}{3}=\frac{13}{3}=\frac{20n+13}{4n+3}\)

=>Với n=0 thì \(\frac{20n+13}{4n+3}\)đạt giá trị nhỏ nhất bằng \(\frac{13}{3}\)

KL:\(\frac{20n+13}{4n+3}\)đạt giá trị nhỏ nhất bằng \(\frac{13}{3}\)với n=0

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câu

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: