Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp Hệ phương trình


Sửa đề một chuts\(\hept{\begin{cases}x^3+3xy^2=4\left(1\right)\\y^3+3x^2y=4\left(2\right)\end{cases}}\)

( 1 ) + ( 2 ) = \(x^3+3xy^2+y^3+3x^2y=4+4\)

\(\Leftrightarrow\left(x+y\right)^3-8=0\)

\(\Leftrightarrow\left(x+y\right)^3-2^3=0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+2^2\right]=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x^2+2xy+y^2+2x+2y+4\right)=0\)

Đến đây bạn tự giải tiếp nhé :)

Đọc tiếp...
Xyz CTV

Sửa đề\(\hept{\begin{cases}x^3+3xy^2=4\\y^3+3x^2y=4\end{cases}}\)

=> \(\hept{\begin{cases}x^3+3x^2y+3xy^2+y^3=8\\x^3-3x^2y+3xy^2-y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y\right)^3=8\\\left(x-y\right)^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=2\\x-y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Đọc tiếp...

a) \(\Leftrightarrow\hept{\begin{cases}\frac{x+1+1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}\Leftrightarrow\hept{\begin{cases}1+\frac{1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}}\)

Đặt \(a=\frac{1}{x+1};b=\frac{1}{y-2}\)

\(\Leftrightarrow\hept{\begin{cases}1+a+2b=6\\5a-b=3\end{cases}\Leftrightarrow\hept{\begin{cases}a+2b=5\\5a-b=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}}}\)

b) ĐK: \(\hept{\begin{cases}x\ne0\\y\ne1\end{cases}}\)

\(PT\left(1\right)\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\)(loại)

, x=2 , x2-2x+4=0 (3)

pt(3) vô nghiệm vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt(2) ta được \(\frac{1}{2}+\frac{1}{y-2}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\left(tm\text{đ}k\right)\)

Vậy nghiệm của hpt là: (x;y)=(2;2)

Đọc tiếp...

b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)

pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)

Vậy nghiệm của hệ pt là(x;y)=(2;2)

Đọc tiếp...

Ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(=x^2+y^2+z^2+2.1=x^2+y^2+z^2+2\left(2y^2-3z^2\right)\)\(=x^2+5y^2-5z^2\)

\(\Leftrightarrow\left(x+y+z\right)^2-x^2+5\left(z-y\right)\left(z+y\right)=0\)

\(\Leftrightarrow\left(2x+y+z\right)\left(y+z\right)+5\left(z-y\right)\left(z+y\right)=0\)

\(\Leftrightarrow\left(y+z\right)\left(2x+y+z+5z-5y\right)=0\)

\(\Leftrightarrow\left(y+z\right)\left(2x-4y+6z\right)=0\)

\(\Leftrightarrow\left(y+z\right)\left(x-2y+3z\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=-z\\x-2y+3z=0\end{cases}}\)

Với y=-z ta có: \(2y^2-3z^2=1\Rightarrow2y^2-3y^2=1\Leftrightarrow-y^2=1\)( do \(y^2\ge0\)) => pt  vô nghiệm

Đọc tiếp...

Ta có: \(\sqrt{8x-y+5}+\sqrt{x+y-1}=3\sqrt{x}+2\)

\(\Leftrightarrow8x-y+5+x+y-1+2\sqrt{\left(8x-y+5\right)\left(x+y-1\right)}=9x+12\sqrt{x}+4\)

\(\Leftrightarrow9x+4+2\sqrt{8x^2-y^2+7xy-3x+6y-5}=9x+4+12\sqrt{x}\)

\(\Leftrightarrow\sqrt{8x^2-y^2+7xy-3x+6y-5}=6\sqrt{x}\)

\(\Leftrightarrow8x^2-y^2+7xy-3x+6y-5=36x\)

\(\Leftrightarrow8x^2-y^2+7xy-39x+6y-5=0\)

\(\Leftrightarrow\left(8x^2+8xy-40x\right)-y^2-xy-5+x+6y=0\)

\(\Leftrightarrow8x\left(x+y-5\right)-\left(y^2+xy-5y\right)+\left(x+y-5\right)=0\)

\(\Leftrightarrow\left(x+y-5\right)\left(8x-y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5-x\\y=8x+1\end{cases}}\)

Thay vào pt dưới ta có:

\(\sqrt{xy}+\frac{1}{\sqrt{x}}=\sqrt{8x-y+5}\left(1\right)\)

+) với y=5-x (1) thành:

\(\sqrt{x\left(5-x\right)}+\frac{1}{\sqrt{x}}=\sqrt{8x-\left(5-x\right)+5}\)

\(\Leftrightarrow\sqrt{5x-x^2}+\frac{1}{\sqrt{x}}=\sqrt{9x}\)\(\Leftrightarrow\sqrt{5x^2-x^3}+1=3x\)\(\Leftrightarrow\sqrt{5x^2-x^3}=3x-1\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\5x^2-x^3=9x^2-6x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x^3+4x^2-6x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{3}\\x=1\left(tm\right)\end{cases}}}\)

Với x=1=>y=4

Đọc tiếp...

a) \(\left(xy+1\right)^2=25\)

\(\Leftrightarrow\orbr{\begin{cases}xy+1=5\\xy+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{y}\\x=-\frac{6}{y}\end{cases}}\)

+ Nếu: \(x=\frac{4}{y}\Leftrightarrow\left(\frac{4}{y}+y\right)^2=49\)

\(\Leftrightarrow y^2+8+\frac{16}{y^2}=49\)

\(\Leftrightarrow\frac{y^4+16}{y^2}=41\)

\(\Leftrightarrow y^4-41y^2+16=0\) => y vô tỉ (loại)

+ Nếu: \(x=-\frac{6}{y}\Rightarrow\left(y-\frac{6}{y}\right)^2=49\)

\(\Leftrightarrow y^2+\frac{36}{y^2}=49+12\)

\(\Leftrightarrow y^4-61y^2+36=0\) => y vô tỉ (loại)

=> hpt vô nghiệm

b) tương tự

Đọc tiếp...

trần huy nhậtPhạm Mai Anh: trmúa hmề =))))))))))))))))))))))))))))))))))))))))))

Đọc tiếp...

Nhờ người khác giúp mà nói năng như thế thì mình cũng chịu bạn rồi. Định giúp bạn làm bài, nhưng mà thôi ko giúp nữa.

Đọc tiếp...

Ta có hệ : \(\hept{\begin{cases}x^2+y^2=\frac{1}{2}\\\left(x+y\right)^3+\left(x-y\right)^3=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}2x^2+2y^2=1\\2x^3+6xy^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2y^2=1-2x^2\left(1\right)\\2x^3+6xy^2=1\left(2\right)\end{cases}}\)

Dễ thấy \(y=0\) không là nghiệm nên thế (1) và (2) ta có : \(2x^3+3.x.\left(1-2x^2\right)=1\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)

+) Với \(x=-1\) thì ta có : \(\hept{\begin{cases}\left(-1\right)^2+y^2=\frac{1}{2}\\\left(-1+y\right)^3+\left(-1-y\right)^3=1\end{cases}}\) ( Vô nghiệm )

+) Với \(x=\frac{1}{2}\) thì ta có : \(\left(\frac{1}{2}\right)^2+y^2=\frac{1}{2}\Leftrightarrow y=\pm\frac{1}{2}\). Thỏa mãn hệ phương trình.

Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left\{\left(\frac{1}{2};-\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2}\right)\right\}\)

Đọc tiếp...

\(\hept{\begin{cases}43x+2y=4310\\x-y+\sqrt{x}=105\end{cases}}\left(đk:x\ge0\right)\)

\(< =>\hept{\begin{cases}43x+2y=4310\\2x-2y+2\sqrt{x}=210\end{cases}}\)

Cộng 2 pt lại ta được : \(43x+2y+2x-2y+2\sqrt{x}=4310+210\)

\(< =>45x+2\sqrt{x}=4520\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)khi đó 

\(45t^2+2t=4520< =>45t^2+2t-4520=0\)

\(< =>\orbr{\begin{cases}x=10\\x=-\frac{452}{45}\end{cases}}\)

Với \(x=10\)thì \(43x+2y=4310\)

\(< =>430+2y=4310< =>2x=4310-430\)

\(< =>2y=3880< =>y=1940\)

Tương tự với \(x=-\frac{452}{45}\)thì ta có \(y=\frac{42043}{15}\)

Vậy hệ phương trình trên có tập nghiệm là \(\left\{10;1940\right\}\left\{\frac{-452}{45};\frac{42043}{15}\right\}\)

Đọc tiếp...

mình nhầm rồi sửa từ dòng 7 @@ lú quá 

\(< =>\hept{\begin{cases}t=10\\t=-\frac{452}{45}\left(loại\right)\end{cases}}\)

Với \(t=10< =>x=100\)

\(< =>43.100+2y=4310\)

\(< =>2y=10< =>y=5\)

Vậy \(\hept{\begin{cases}x=100\\y=5\end{cases}}\)

Đọc tiếp...

bn này kêu bn là "trên p/s m có bị ngu ko?" mà vẫn trl câu hỏi của bn này à?? :D??

Đọc tiếp...

\(\hept{\begin{cases}x^3=2y+1\\y^3=2x+1\end{cases}\Rightarrow x^3-y^3+2\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0}\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2=0\end{cases}\Leftrightarrow x=y}\)

khi đó ta có hệ \(\hept{\begin{cases}x=y\\x^3-2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\\left(x^2+1\right)-2\left(x+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\\left(x+1\right)\left(x^2-x-1\right)=0\end{cases}}}\)

th1: x=y=-1

th2: \(\hept{\begin{cases}x=y\\x^2-x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}}\)

vậy \(\orbr{\begin{cases}x=y=-1\\x=y=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

Đọc tiếp...

Đỗ Nguyễn Phương Thùy \(x^2+xy+y^2+2=\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2+2>0\) chứ ko phải cosi 

\(y^3=2y+1\)\(\Leftrightarrow\)\(\left(y+1\right)\left(y^2-y-1\right)=0\)\(\Leftrightarrow\)\(\hept{\begin{cases}y_1=-1\\y_2=\frac{1+\sqrt{5}}{2}\\y_3=\frac{1-\sqrt{5}}{2}\end{cases}}\)

Đọc tiếp...

giải nè,ko hiểu vào hỏi mk nha^-^,từ phương trình ban đầu ta chuyển vế,được

\(\hept{\begin{cases}x^3-2y-1=0\\y^3-2x-1=0\end{cases}}\) =>ta dùng" phương pháp cộng đại số"lấy phương trình trên trừ đi phương trình dưới!!!!!                                            nghe vô lý nhưng thuyết phục,hehe=> x- y- 2y + 2x = 0

               triển đẳng thức   => (x - y)(x+ xy + y2) -2(y - x) =0    =>(x - y)(x2 + xy + y)+ 2( x - y) = 0 

                     => (x - y)(x+ xy + y+ 2) =0 (vì x2 + yluôn > 2xy theo bất đẳng thức cô si,nên suy ra  x+ xy +y2 +2 luôn lớn hơn 0)

                     => phương trình trên sẽ có nghiệm x - y =0; => x = y                 

thay x = y vào hệ phương trình bên trên...ta có  :y= 2y +1  => y3 + y2 = y2 +2y +1

                                                                           => y2( y + 1) = ( y + 1)2  => y2 = y + 1 => y2 - y -1=0,giải denta,ta được 2 nghiệm y1;y2

                  y1  = x\(\frac{1+\sqrt{5}}{2}\)    Và  y2 = x=\(\frac{1-\sqrt{5}}{2}\)

                                 Vạy hệ phương trình trên có nghiệm...bla...bla..oki..vậy nhá,sai khúc nào mong bạn bỏ qua nha!

                                                                          

                                            

Đọc tiếp...

\(\hept{\begin{cases}3\left(x-1\right)+2\left(x-2y\right)=10\\4\left(x-2\right)-\left(x-2y\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x-3+2x-4y-10=0\\4x-8-x+2y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x-4y-13=0\left(1\right)\\3x+2y-10=0\left(2\right)\end{cases}}\)

Nhân 2 vào từng vế của ( 2 ) 

\(\Rightarrow\hept{\begin{cases}5x-4y-13=0\\6x+4y-20=0\end{cases}}\)

Lấy ( 1 ) cộng ( 2 ) theo vế

\(\Rightarrow11x-33=0\Leftrightarrow11x=33\Leftrightarrow x=3\)

Thế x = 3 vào ( 1 ) 

=> \(5\cdot3-4y-13=0\Rightarrow4y=2\Leftrightarrow y=\frac{2}{4}=\frac{1}{2}\)

Vậy ( x ; y ) = ( 3 ; 1/2 ) 

Đọc tiếp...

\(\hept{\begin{cases}3\left(x-1\right)+2\left(x-2y\right)=10\\4\left(x-2\right)-\left(x-2y\right)=2\end{cases}\Leftrightarrow\hept{\begin{cases}3x-3+2x-4y=10\\4x-8-x+2y=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5x-13-4y=0\\3x-10+2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}5x-13-4y=0\\6x-20+4y=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}11x-23=0\\3x-10+2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{23}{11}\left(1\right)\\3x-10+2y=0\left(2\right)\end{cases}}}\)

Thay x vào pt 2 ta đc 

\(3.\frac{23}{11}-10+2y=0\Leftrightarrow\frac{69}{11}-10+2y=0\)

\(\Leftrightarrow y=\frac{41}{22}\)

Vậy \(\left\{x;y\right\}=\left\{\frac{23}{11};\frac{41}{22}\right\}\)

Đọc tiếp...

                                        \(\text{Bài làm}:\)

\(\text{Ta có :}\)

\(\hept{\begin{cases}3\left(x-1\right)+2\left(x-2y\right)=10\\4\left(x-2\right)-\left(x-2y\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x-3+2x-4y=10\\4x-8-x+2y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x-4y-3=10\left(1\right)\\3x-8+2y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x-4y-13=0\\3x+2y-10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x-4y-13=0\\2\left(3x+2y-10\right)=2.0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x-4y-13=0\left(1\right)\\6x+4y-20=0\left(2\right)\end{cases}}\)

\(\Leftrightarrow\left(5x-4y-13\right)+\left(6x+4y-20\right)=0+0\)

\(\Leftrightarrow5x-4y-13+6x+4y-20=0\)

\(\Leftrightarrow11x-33=0\)

\(\Leftrightarrow11x=33\)

\(\Leftrightarrow x=3\)

Thay x=3 vào (1) ta được :

\(5.3-4y-13=0\)

\(\Leftrightarrow15-4y-13=0\)

\(\Leftrightarrow2-4y=0\)

\(\Leftrightarrow4y=2\)

\(\Leftrightarrow y=0,5\)

\(\text{Vậy}\hept{\begin{cases}x=3\\y=0,5\end{cases}}\)

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Đọc tiếp...

pt đầu 

<=> \(\left(x+1\right)^3-y^3+3\left(x+1\right)-3y=0\)

<=> \(\left(x+1-y\right)\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)=0\)

<=> \(x+1-y=0\)

vì \(\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)>0,\forall x;y\)

<=> y = x + 1 

Thế vào phương trinhd dưới rồi giải

\(x^2+\left(x+1\right)^2-3x-1=0\)

<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)

Với x = 0 ta suy ra y = 1

Với x = 1/2 suy ra y = 3/2

Kết luận:...

Đọc tiếp...

Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)

Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình

KL: S={(2;1)}

Đọc tiếp...

:))

\(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)

\(\Leftrightarrow x=2;y=1\)

Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?

Đọc tiếp...

\(\hept{\begin{cases}x^3-x=x^2y-y\left(1\right)\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\left(2\right)\end{cases}}\)

điều kiện: \(y\ge0\)

\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=\pm1\end{cases}}\)

-nếu x=\(\pm\)1 thay vào phương trình (2) ta có: \(\sqrt{y}-1=0\Leftrightarrow y=1\)

-nếu \(x=y\ge0\)

khi đó \(\left(2\right)\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\left(3\right)\)

do \(2\left(x^4+1\right)\ge2\cdot2\sqrt{x^4\cdot1}=4x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge2\left|x\right|=2x\)

nên \(VT\left(3\right)\ge2\left(x-2\sqrt{x}+1\right)=2\left(\sqrt{x}-1\right)^2\ge0\)

do đó \(pt\left(3\right)\Leftrightarrow\hept{\begin{cases}x^4=1\\\sqrt{x}-1=0\end{cases}\Leftrightarrow x=1\Rightarrow y=1}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left\{\left(1,1\right);\left(-1;1\right)\right\}\)

Đọc tiếp...

A! anh em lớp 12 đấy khi nào em lên Hoà Bình đã

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: