Giúp tôi giải toán và làm văn


alibaba nguyễn CTV 15/09/2017 lúc 16:44
Báo cáo sai phạm

Theo Schur thì ta có:

\(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)

Giờ ta chứng minh:

\(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

\(\Leftrightarrow3\sqrt[3]{\left(abc\right)^2}\ge\frac{9abc}{a+b+c}\)

\(\Leftrightarrow1\ge\frac{3\sqrt[3]{abc}}{a+b+c}\)

\(\Leftrightarrow a+b+c\ge3\sqrt[3]{abc}\)(đúng)

Vậy ta có ĐPCM

Đọc tiếp...
Le Nhat Phuong 15/09/2017 lúc 15:11
Báo cáo sai phạm

vũ tiền châu tham khảo nhé:

  Ta có: 3 = ab + bc + ca ≥ 3.³√(abc) = > abc ≤ 1 <=> 1 - abc ≥ 0 
1 + a²(b + c) = 1 + a(ab + ac) = 1 + a(3 - bc) = 1 - abc + 3a ≥ 3a 
=> 1/[1 + a²(b + c)] ≤ 1/(3a) 
Tương tự: 
1/[1 + b²(c + a)] ≤ 1/(3b) 
1/[1 + c²(a + b)] ≤ 1/(3c) 
Cộng vế 3 bđt trên đc: 
VT đpcm ≤ 1/3 . (1/a + 1/b + 1/c) = 1/3 . (ab + bc + ca)/abc = 1/3 . 3/abc = 1/abc (đpcm) 
Đẳng thức xảy ra <=> a = b = c = 1

Đọc tiếp...
Trần Hữu Ngọc Minh 15/09/2017 lúc 20:50
Báo cáo sai phạm

bài này la bài khác nha:

\(a^2+ab+b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)

\(=\left(x+y\right)\left(a^2+b^2\right)+2\left(x-y\right)ab\)

\(\Rightarrow\hept{\begin{cases}x+y=1\\x-y=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{1}{4}\end{cases}}}\)

\(\Rightarrow a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\)

Đọc tiếp...
kudo shinichi CTV Hôm qua lúc 20:17
Báo cáo sai phạm

ĐKXĐ: \(a,b\ge0\)

Áp dụng bất đẳng thức AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Có: \(A=\frac{a+b}{2}\ge\frac{2.\sqrt{ab}}{2}=\sqrt{ab}=B\)

                                                         đpcm

Tham khảo nhé~

Đọc tiếp...
Nguyen ngoc dat 10/11/2017 lúc 19:27
Báo cáo sai phạm

Bài này chỉ giải được khi sức mỗi người làm bằng nhau thôi nha bạn .

   Mỗi ngày mỗi người làm được :

       9 : 25 : 3 = 0,12 ( m )

   Nếu đội đó có 5 người thì mỗi ngày đội làm được :

      0,12 . 5 = 0,6 ( m )

   Đội đó làm 18 m trong :

     18 : 0,6 = 30 ( ngày )

  đ/s : ...

Đọc tiếp...
Trần Tích Thường 10/11/2017 lúc 19:51
Báo cáo sai phạm

Mỗi ngày 1 người làm được số m là :

  ( 9 : 25 ) : 3 = 0,12 ( m )

Nếu đội có thêm 5 người thì mỗi ngày đội làm được số m là :

  0,12 x 5 = 0,6 ( m )

Đội đó làm 18 m trong số ngày là :

  18 : 0,6 = 30 ( ngày )

Đọc tiếp...
Đỗ Trung Kiên 10/11/2017 lúc 19:20
Báo cáo sai phạm

giải hộ mình

Đọc tiếp...
Tony Spicer 15/03/2015 lúc 12:49
Báo cáo sai phạm

1) Phân tích A ra :

 A= 1717.17+\(\frac{1}{17^{18}.17}\)+1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.

Mà 1718>1/1718 nên suy ra A>B

2) Bài nay tương tự bài trên. 

Đọc tiếp...
Vũ Thùy Trang 05/03/2017 lúc 20:04
Báo cáo sai phạm

trung nguyên làm bài j vậy

Đọc tiếp...
lê nho cảnh 14/02/2018 lúc 20:42
Báo cáo sai phạm

\(A< B\hept{\begin{cases}\\\end{cases}ko}biết\)

Đọc tiếp...
Thắng Nguyễn CTV 08/10/2016 lúc 21:12
Báo cáo sai phạm

\(\frac{2y+3z+5}{1+x}+1+\frac{3z+x+5}{1+2y}+1+\frac{x+2y+5}{1+3z}+1\ge\frac{51}{7}+3=\frac{72}{7}\left(1\right)\)

Vậy ta cần chứng minh Bđt (1) , ta có:

\(VT_{\left(1\right)}=\frac{2y+3z+6+x}{1+x}+\frac{3z+x+2y+6}{1+2y}+\frac{x+2y+3z+6}{1+3z}\)

\(=\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{1+3z}\right)\)

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:

\(\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{3z}\right)\)

\(\ge\left(3z+x+2y+6\right)\left(\frac{9}{3+x+2y+3z}\right)\)

\(=\left(18+6\right)\cdot\frac{9}{18+3}=24\cdot\frac{3}{7}=\frac{72}{7}\)

Vậy Bđt (1) đúng =>Đpcm

Đọc tiếp...
Thầy Giáo Toán 30/08/2015 lúc 11:48
Báo cáo sai phạm

Từ giả thiết suy ra \(\frac{2b}{1+b}=1-\frac{a}{1+a}=\frac{1}{1+a}\to2b+2ab=1+b\to2ab+b=1.\)

Theo bất đẳng thức Cô-Si \(1=2ab+b\ge2\sqrt{2ab\cdot b}=2\sqrt{2ab^2}\to1\ge8ab^2\to ab^2\le\frac{1}{8}.\)  (ĐPCM)

Đọc tiếp...
Trần Hoàng Việt 10/10/2017 lúc 13:20
Báo cáo sai phạm

Áp đụng bất đẳng thức Cauchy-Schwartz , ta có :

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự , ta có:

\(\frac{bc}{b+3c+2a}=\frac{bc}{\left(a+b\right)+\left(a+c\right)+2c}\le\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)

\(\frac{ac}{c+3a+2b}=\frac{ac}{\left(b+c\right)+\left(b+a\right)+2b}\le\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)

Cộng vế theo vế ta có :

\(\frac{ac}{c+3a+2b}+\frac{bc}{b+3c+2a}+\frac{ab}{a+3b+2c}\)

\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)+\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)+\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)

\(=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{1}{9}\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\frac{1}{9}\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\frac{a}{18}+\frac{b}{18}+\frac{c}{18}\)\(=\frac{a+b+c}{6}\)

\(\RightarrowĐPCM\)

Đọc tiếp...
Thiên An 23/06/2017 lúc 10:38
Báo cáo sai phạm

Bạn xem câu hỏi số 184919 nha

Đọc tiếp...
Hoàng Vũ 10/11 lúc 15:05
Báo cáo sai phạm

helloww ư zxcdc

Đọc tiếp...
Girl 02/11/2018 lúc 18:17
Báo cáo sai phạm

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{2y+x+z}\le\frac{1}{16}\left(\frac{1}{y}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\)

\(\frac{1}{2z+x+y}\le\frac{1}{16}\left(\frac{1}{z}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế:

\(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

Đọc tiếp...
sãkaya 30/05/2017 lúc 18:55
Báo cáo sai phạm

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\ge ab+bc+ac\)

\(\Rightarrow3+c^2\ge ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\sqrt{3+c^2}\ge\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Thiết lập tương tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{a^2+3}}\le\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\\\frac{ac}{\sqrt{b^2+3}}\le\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\end{cases}}\)

\(\Rightarrow VT\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\sqrt{\frac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\le\frac{\frac{bc}{a+c}+\frac{bc}{a+b}}{2}\\\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ac}{a+b}+\frac{ac}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)+\left(\frac{ac}{b+c}+\frac{ab}{b+c}\right)+\left(\frac{bc}{a+c}+\frac{ab}{a+c}\right)}{2}\)

\(\Rightarrow VT\le\frac{a+b+c}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

Đọc tiếp...
Thắng Nguyễn CTV 30/05/2017 lúc 18:51
Báo cáo sai phạm

Ta có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot9=3\)

Khi đó áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{\sqrt{c^2+3}}=\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\). Tương tự cũng có: 

\(\frac{bc}{\sqrt{a^2+3}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{2}\left(\frac{bc+ca}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ca}{b+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Đọc tiếp...
Thắng Nguyễn CTV 23/05/2017 lúc 16:57
Báo cáo sai phạm

vẻ vang gì 100% sai

Đọc tiếp...
alibaba nguyễn 24/05/2017 lúc 17:01
Báo cáo sai phạm

Phan Văn Long - Trang của Phan Văn Long - Học toán với OnlineMath không thấy dưới mẫu là tích của 3 thừa số hả. Cộng lúc nào mà nói như đúng rồi.

Đọc tiếp...
sssongokusss 16/09/2018 lúc 15:40
Báo cáo sai phạm

11 phút trước (15:52)

Cho a,b >0 và a+b=1. chứng minh rằng: (a+1a )2+(b+1b 2)≥12,5

Mình cần gấp, ai làm nhanh và đúng nhất được 3 ks!

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 9 Bất đẳng thức

VKOOK_BTS

Trả lời

0

Đánh dấu

8 phút trước (15:31)

Đọc tiếp...
VRCT_Ran love shinichi 11/07/2018 lúc 10:07
Báo cáo sai phạm

Ta có : \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\)

Ta lại có : \(x^2+y^2\le2xy\Leftrightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\)

               \(y^2+z^2\le2yz\Leftrightarrow\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\)    

              \(z^2+x^2\le2zx\Leftrightarrow\frac{y^2}{z^2+x^2}\le\frac{y^2}{2zx}\)

Cộng vế theo vế ta có :

\(\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)

\(\Leftrightarrow\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}+3\)

\(\Leftrightarrow\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^2+y^2+z^2}{2xyz}+3\)

\(\Rightarrowđpcm\)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câu

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: