Giúp tôi giải toán


Nguyễn Thiều Công Thành 2 giờ trước (22:32)
Báo cáo sai phạm

đặt \(NTCT=\frac{y}{x+3y}+\frac{z}{y+3z}+\frac{x}{z+3x}\)

\(\Rightarrow3NTCT=\frac{3y}{x+3y}+\frac{3z}{y+3z}+\frac{3x}{z+3x}\)

\(=3-\left(\frac{x}{x+3y}+\frac{y}{y+3z}+\frac{z}{z+3x}\right)=3-\left(\frac{x^2}{x^2+3xy}+\frac{y^2}{y^2+3yz}+\frac{z^2}{z^2+3zx}\right)\)

lại có:

\(\frac{x^2}{x^2+3xy}+\frac{y^2}{y^2+3yz}+\frac{z^2}{z^2+3zx}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{1}{3}\left(x+y+z\right)^2}\)

\(=\frac{3}{4}\)

\(\Rightarrow3NTCT\le3-\frac{3}{4}=\frac{9}{4}\Rightarrow NTCT\le\frac{3}{4}\left(Q.E.D\right)\)

dấu = xảy ra khi x=y=z

OoO Ledegill2 OoO 5 giờ trước (20:06)
Báo cáo sai phạm

Vũ Thu Mai bn tham khảo nhé. Tham khảo thôi nha:

 áp dụng cosi 3 số ko âm: 
1.1.³√(x+3y) ≤ (1+1+x+3y)\3 
1.1 ³√(y+3z) ≤ (1+1+y+3z)\3 
1.1.³√(z+3x) ≤ (1+1+z+3x)\3 
cộng vế vế ta đc 
=> ³√(x+3y) + ³√(y+3z) + ³√(z+3x) ≤ (6+4(x+y+z))\3 
=> ³√(x+3y) + ³√(y+3z) + ³√(z+3x) ≤ (6+3)\3 = 3 
dấu = xảy ra khi: 
1 = ³√(x+3y) = ³√(y+3z) = ³√(z+3x) 
=> x=y=z=1/4

Thắng Nguyễn CTV 14 giờ trước (11:19)
Báo cáo sai phạm

Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)

\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)

Xảy ra khi \(a=b=c\)

Trần Việt Anh Hôm qua lúc 21:06
Báo cáo sai phạm

Ta thấy :n=0,2,4,6,8,10,....

=>n là những số chẵn

Lê Thị Thanh Huyền Hôm qua lúc 21:03
Báo cáo sai phạm

các số chẵn

vũ tiền châu 16/09 lúc 23:28
Báo cáo sai phạm

với \(x+y+z=3\Rightarrow3x=x\left(x+y+z\right)=x^2+xy+xz\Rightarrow3x+yz=\left(x+y\right)\left(x+z\right)\)

tương tự mấy cái kia nhé

Áp dụng bđt bu nhi a ta có \(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{xz}+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xz}+\sqrt{xy}\)

=> \(x+\sqrt{3x+yz}\ge x+\sqrt{xy}+\sqrt{xz}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) 

tương tự mấy cái kia rồi cộng vào ta có 

\(A\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (ĐPCM)

cu Shin 17/09 lúc 20:32
Báo cáo sai phạm

=1 

 kb với mk đi nào

Ngô Xuân Tiền 17/09 lúc 19:42
Báo cáo sai phạm

bằng 1

vũ tiền châu 15/09 lúc 17:14
Báo cáo sai phạm

ta có 

\(1+16a^4\ge8a^2\ge0\)

mà \(a^2\ge0\)

=> \(\frac{a^2}{1+16a^4}\le\frac{a^2}{8a^2}=\frac{1}{8}\)    

tương tự thì cái kia cũng thế 

alibaba nguyễn CTV 15/09 lúc 16:44
Báo cáo sai phạm

Theo Schur thì ta có:

\(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)

Giờ ta chứng minh:

\(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

\(\Leftrightarrow3\sqrt[3]{\left(abc\right)^2}\ge\frac{9abc}{a+b+c}\)

\(\Leftrightarrow1\ge\frac{3\sqrt[3]{abc}}{a+b+c}\)

\(\Leftrightarrow a+b+c\ge3\sqrt[3]{abc}\)(đúng)

Vậy ta có ĐPCM

Le Nhat Phuong 15/09 lúc 15:11
Báo cáo sai phạm

vũ tiền châu tham khảo nhé:

  Ta có: 3 = ab + bc + ca ≥ 3.³√(abc) = > abc ≤ 1 <=> 1 - abc ≥ 0 
1 + a²(b + c) = 1 + a(ab + ac) = 1 + a(3 - bc) = 1 - abc + 3a ≥ 3a 
=> 1/[1 + a²(b + c)] ≤ 1/(3a) 
Tương tự: 
1/[1 + b²(c + a)] ≤ 1/(3b) 
1/[1 + c²(a + b)] ≤ 1/(3c) 
Cộng vế 3 bđt trên đc: 
VT đpcm ≤ 1/3 . (1/a + 1/b + 1/c) = 1/3 . (ab + bc + ca)/abc = 1/3 . 3/abc = 1/abc (đpcm) 
Đẳng thức xảy ra <=> a = b = c = 1

Trần Hữu Ngọc Minh 15/09 lúc 20:50
Báo cáo sai phạm

bài này la bài khác nha:

\(a^2+ab+b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)

\(=\left(x+y\right)\left(a^2+b^2\right)+2\left(x-y\right)ab\)

\(\Rightarrow\hept{\begin{cases}x+y=1\\x-y=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{1}{4}\end{cases}}}\)

\(\Rightarrow a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\)

Nguyễn Võ Anh Nguyên 14/09/2017 lúc 22:09
Báo cáo sai phạm

Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:

\(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:

\(b^2< ab+bc;c^2< ac+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)

Nguyễn Thiều Công Thành 14/09/2017 lúc 19:04
Báo cáo sai phạm
Cố gắng hơn nữa 16/09 lúc 14:25
Báo cáo sai phạm

P/s: lâu nay mình đang bận ôn thi toán casio nên mình tạm thời sẽ ít giải nhé 

Cố gắng hơn nữa 16/09 lúc 14:24
Báo cáo sai phạm

ta làm như sau nhé:

\(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

nếu bạn không biết cm thì ib mình chỉ nhé
vậy ta thấy \(MinA=\frac{x+y+z}{2}\)vậy dấu bằng xảy ra chỉ khi x=y=z

giờ ta thay điều kiện nhé để tìm x hoặc y hoặc z là được. Giả sử mình thay x vào đk nhé, ta sẽ được \(x=y=z=\frac{2014}{3\sqrt{2}}\)

thay vào tìm Min ta được: \(MinA=\frac{1007}{\sqrt{2}}\)

Nguyễn Thiều Công Thành 13/09/2017 lúc 22:39
Báo cáo sai phạm

áp dụng bđt cauchy ta có:

\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge2\left(a^2+b^2+c^2\right)-a^2-b^2-c^2\)

\(=a^2+b^2+c^2\left(Q.E.D\right)\)

Đinh Đức Hùng CTV 13/09/2017 lúc 21:29
Báo cáo sai phạm

Theo Cauchy - Schwarz ta có : \(\left(a^2+b^2+c^2\right)\left(c^2+a^2+b^2\right)\ge\left(ab+bc+ac\right)^2\)

\(\Rightarrow a^2+b^2+c^2\ge\left|ab+bc+ac\right|\ge ab+ac+bc\)

Ta có : \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(=a^2+b^2+c^2\)(đpcm)

Nguyễn Thiều Công Thành 13/09/2017 lúc 23:02
Báo cáo sai phạm

dễ thôi

ta có:

\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c};\frac{b}{1+c^2d}=b-\frac{bc^2d}{1+c^2d};\frac{c}{1+d^2a}=c-\frac{cd^2a}{1+d^2a};\frac{d}{1+a^2b}=d-\frac{da^2b}{1+a^2b}\)

áp dụng cauchy ta có:

\(b^2c+1\ge2b\sqrt{c};c^2d+1\ge2c\sqrt{d};d^2a+1\ge2d\sqrt{a};a^2b+1\ge2a\sqrt{b}\)

\(=4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\)

theo ông cauchy thì 

\(ab\sqrt{c}\le\frac{ab\left(c+1\right)}{2};bc\sqrt{d}\le\frac{bc\left(d+1\right)}{2};cd\sqrt{a}\le\frac{cd\left(a+1\right)}{2};da\sqrt{b}\le\frac{da\left(b+1\right)}{2}\)

\(\Rightarrow4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\ge4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\)

vẫn là ông cauchy nói là \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)

\(ab+bc+cd+da=\left(b+d\right)\left(a+c\right)\le\frac{\left(a+b+c+d\right)^2}{4}=4\)

\(\Rightarrow4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\ge4-\frac{4+4}{4}=2\)

\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\left(Q.E.D\right)\)

dấu bằng xảy ra khi a=b=c=d=1

\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge\left(a+b+c+d\right)-\frac{ab^2c}{2b\sqrt{c}}-\frac{bc^2d}{2c\sqrt{d}}-\frac{cd^2a}{2d\sqrt{a}}-\frac{da^2b}{2a\sqrt{b}}\)

Phạm Tuấn Kiệt 14/09/2017 lúc 22:45
Báo cáo sai phạm

mk thực ra ko ko hiểu đoạn abc +bcd + cda + dab thôi còn đoạn kia mk cx làm đc

Nguyễn Thiều Công Thành 13/09/2017 lúc 23:06
Báo cáo sai phạm

 Kiệt đừng ghi dòng cuối nhé,ko bít nó ở mô ra

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: