Giúp tôi giải toán


Huy Nguyễn Đức 4 giờ trước (21:59)

P=abc/(2bc+c^2)+abc/(2ac+a^2)+abc/(2ab+b^2)

P=1/(2bc+c^2)+1/(2ac+a^2)+1/(2ab+b^2)

áp dụng BĐT cô-si swat ta có 

P>=(1+1+1)^2/(a+b+c^2)=9/(a+b+c)^2>=9/((3 căn bậc 3 abc)^2=9/9=1 

dấu = xảy ra khi a=b=c=1 

Trần Hữu Quốc Thái 12/02/2017 lúc 08:26

66150

Winx Bloom 12/02/2017 lúc 08:26

105 x 105 x 6 = 66150

tôi không quan tâm 12/02/2017 lúc 08:25

105 x 105 x 6 

= 11025 x 6

= 66150

Huy Nguyễn Đức 7 giờ trước (19:08)

theo đề bài ta có (x+y)^2>=1

2(x^2+y^2)>=(x+y)^2>=1 

x^2+y^2>=1/2 

(x^2+y^2)^2>=1/4 

2(x^4+y^4)>=(x^2+y^2)^2>=1/4

x^4+y^4>=1/8(đề bạn ghi thiếu thì phải)

Vũ Đoàn Hôm qua lúc 10:57

đề bạn sai dấu rồi nha 

Vũ Đoàn 7 giờ trước (19:37)

là zầy nè

Áp dụng bđt: 1/(x + y) ≤ 1/4 . (1/x + 1/y) với x,y > 0 
1/(a + b + 2c) = 1/[(c + a) + (c + b)] ≤ 1/4 . [1/(c + a) + 1/(c + b)] 
=> ab/(a + b + 2c) ≤ 1/4 . [ab/(c + a) + ab/(c + b)] 
Đẳng thức xảy ra <=> c + a = c + b 
tương tự: 
bc/(b + c + 2a) ≤ 1/4 . [bc/(a + b) + bc/(a + c)] 
ca/(c + a + 2b) ≤ 1/4 . [ca/(b + c) + ca/(b + a)] 
VT đpcm ≤ 1/4 . [ab/(c + a) + ab/(c + b) + bc/(a + b) + bc/(a + c) + ca/(b + c) + ca/(b + a)] 
= 1/4 . {[ab/(c + a) + bc/(a + c)] + [ab/(c + b) + ca/(b + c)] + [bc/(a + b) + ca/(b + a)]} 
= 1/4 . (a + b + c) = (a+b+c)/4

tống thị quỳnh Hôm qua lúc 20:00

uk đúng rồi mk sorry vậy nếu là dấu nhỏ hơn hoặc bằng bạn có thể giải giúp mk ko

Vũ Đoàn Hôm qua lúc 10:48

Đặt a+b-c=x

-a+b+c=y

a-b+c=z

=> x+y+z=a+b+c

=>x+y=2b

y+z=2c

x+z=2a

nhân 4 cả hai vế rồi tách ra là đc nha bạn 

Dấu ''='' xảy ra khi và chỉ khi a=b=c

Lê Minh Đức 26/04 lúc 17:18

\(\frac{18+10x}{\sqrt{1-x^2}}=\frac{4-4x+14+14x}{\sqrt{\left(1-x\right)\left(1+x\right)}}=\frac{4\left(1-x\right)+14\left(1+x\right)}{\sqrt{\left(1-x\right)\left(1+x\right)}}\)

Áp dụng bất đẳng thức Cauchy ta có:

\(4\left(1-x\right)+14\left(1+x\right)\ge2\sqrt{4.14\left(1-x\right)\left(1+x\right)}=4\sqrt{14}.\sqrt{\left(1-x\right)\left(1+x\right)}\)

\(\frac{18+10x}{\sqrt{1-x^2}}\ge\frac{4\sqrt{14}.\sqrt{\left(1-x\right)\left(1+x\right)}}{\sqrt{\left(1-x\right)\left(1+x\right)}}=4\sqrt{14}\)

Dấu "=" xảy ra \(\Leftrightarrow4\left(1-x\right)=14\left(1+x\right)\Leftrightarrow18x=-10\Leftrightarrow x=-\frac{5}{9}\)

s2 Lắc Lư s2 26/04 lúc 22:42

Tình yêu sao khác thường 
Đôi lúc ta thật kiên cường 
Nhiều người trách mình điên cuồng 
Cứ lao theo dù không lối ra 

J 26/04 lúc 20:49

cái này tôi nháp nhiều lần rồi, với lại đây là đề thi hsg mà, k sai đc đâu

Hoàng Phúc CTV 26/04 lúc 20:09

bn xem lại điều kiện 

alibaba nguyễn 26/04 lúc 09:22

Ta có:

\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.\left(a+2b+3c\right)\)

\(\ge3+3+2+\frac{20}{4}=13\)

Vậy GTNN của A là 13 đạt được khi \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)

tth 26/04 lúc 09:27

 _(Từ đầu bài ta có: GTNN của A là 13 đạt được khi: b = 3 và c =

a =  9 - (3 + 4)

= 2

lethihuong 6 giờ trước (20:41)

câu hỏi này khó quá với lại mình đang học lớp 5 nên mình chẳng biết đâu. AHIHI !

alibaba nguyễn 24/04 lúc 18:33

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

alibaba nguyễn 24/04 lúc 18:37

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

le trang 6B 25/04 lúc 16:19

ket qua la2 nha

Phạm Thị Hằng 24/04 lúc 21:56

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.

Phạm Thị Hằng 24/04 lúc 21:55

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

<=> \(a^3-b^3=a^3+b^3\) 

do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng

Vậy bất đẳng thức đã cho là đúng (đpcm)

Thiên An 25/04 lúc 21:40

@CTV phán chuẩn, đề năm ngoái chứ đâu ^.^

Chibi 25/04 lúc 16:23

P = ab + \(\frac{a-b}{\sqrt{ab}}\)

Thay a - b = \(\frac{a+b}{\sqrt{ab}}\)vào P

=> P = ab + \(\frac{a+b}{\sqrt{ab}\sqrt{ab}}\)

= ab + \(\frac{a+b}{ab}\)>= 2\(\sqrt{a+b}\)

Làm tiếp cứ đi vòng vòng mà không có lối ra.

alibaba nguyễn 25/04 lúc 09:52

Linh hoạt biến đổi xíu sẽ ra thôi mà.

tống thị quỳnh 23/04 lúc 22:25

có a;b;c là độ dài 3 cạnh 1 tam giác nên theo bđt tam giác ta có:b+c>a \(\Rightarrow\left(b+c\right)^2>a^2\);a+b>c\(\Rightarrow\left(a+b\right)^2>c^2\);

a+c>b\(\Rightarrow\left(a+c\right)^2>b^2\)suy ra \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a^{ }+b\right)^2>a.a^2+b.b^2+c.c^2\)

=\(a^3+b^3+c^3\)

Nguyễn Trần Thanh Ngọc 23/04 lúc 23:03

bạn ơi lớn hơn bằng mà ;_; 

Nguyễn Phạm Châu Anh Hôm qua lúc 21:15

ab-a-b+1

=a(b-1)-(b-1)

=(a-1)(b-1)

CMTT=>bc-b-c+1=(b-1)(c-1)

         =>ca-c-a+1=(c-1)(a-1)

(ab-a-b+1)(bc-b-c+1)(ca-c-a+1)=[(a-1)(b-1)(c-1)]\(^2\ge0\forall\)a,b,c

Vậy các biểu thức trên không có giá trị cùng âm.

Vũ Quang Trường 22/04/2017 lúc 21:05

hheheheheheheh không khai bắn nát sọ -_-

Vũ Quang Trường 22/04/2017 lúc 21:02

khi nào biết khai mau

dohuutue Minh 22/04/2017 lúc 21:00

khi nao biết thì nói cho    -_-

Thắng Nguyễn CTV 21/04/2017 lúc 22:59

Áp dụng BĐT AM-GM ta có: 

\(a+b\ge2\sqrt{ab}\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\frac{ab}{a+b}\le\frac{a+b}{4}\).Thiết lập các BĐT tương tự:

\(\frac{bc}{b+c}\le\frac{b+c}{4};\frac{ca}{c+a}\le\frac{c+a}{4}\)

Cộng theo vế các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Thắng Nguyễn CTV 22/04/2017 lúc 12:22

Từ \(a+b+c+ab+bc+ca=6abc\)

\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Cho \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) thì ta có:

\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^2+1\ge2\sqrt{z^2}=2z\)

Cộng theo vế 3 BĐT trên ta có: 

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)

Cộng theo vế của (1) và (2) ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: