Giúp tôi giải toán


Vũ Tri Hải Hôm qua lúc 00:53

Nhân cả hai vế với \(\sqrt{a+1}+\sqrt{a}\)  rồi nhân chéo lên là ra thôi.

obelish Hôm qua lúc 11:10

khong dung y to

hồ huy hoàng Hôm qua lúc 11:26

thỏ 14 con

gà 22 con

nghia Hôm qua lúc 10:51

gọi số thỏ là a, số gà là b

ta có tổng số chân thỏ và chân gà là 100 => 4a+2b=100   (1)

        tổng số đầu thỏ và gà là 36            => a+b=36         (2)

từ (1) và (2) ta có hệ phương trình\(\hept{\begin{cases}4a+2b=100\\a+b=36\end{cases}}\)

                                                     \(\hept{\begin{cases}a=36-b\\4\left(36-b\right)+2b=100\end{cases}}\)

                                                      \(\hept{\begin{cases}a=36-b\\144-4b+2b=100\end{cases}}\)

                                                       \(\hept{\begin{cases}a=36-b\\b=22\end{cases}}\) 

                                                       \(\hept{\begin{cases}a=36-22=14\\b=22\end{cases}}\)

=> số thỏ là 14 con, số gà là 22 con

Thắng Nguyễn CTV Hôm qua lúc 08:08

Áp dụng BĐT Cauchy-Schwarz dạng Engelta có:

\(VT=\frac{700}{2\left(xy+yz+xz\right)}+\frac{386}{x^2+y^2+z^2}\)\(=\frac{\sqrt{700}^2}{2\left(xy+yz+xz\right)}+\frac{\sqrt{386}^2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{\left(x+y+z\right)^2}\)

\(=\left(\sqrt{700}+\sqrt{386}\right)^2>2015\left(x+y+z=1\right)\)

Thắng Nguyễn CTV Hôm qua lúc 07:28

Ta có: \(12\ge\left(a+b\right)^3+4ab\ge a^3+b^3+3ab\left(a+b\right)+4ab\)

\(\ge4ab\left(a+b\right)+4ab\ge8\sqrt{a^3b^3}+4ab\)

\(\Leftrightarrow3\ge2\sqrt{a^3b^3}+ab\Leftrightarrow\left(\sqrt{ab}-1\right)\left(2ab+2\sqrt{ab}+3\right)\le0\)

\(\Leftrightarrow ab\le1\). Ta có BĐT \(\frac{1}{1+a}+\frac{1}{1+b}\le\frac{2}{1+\sqrt{ab}}\)

\(\Leftrightarrow\frac{\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\le0\) đúng với \(ab\le1\)

Áp dụng BĐT vừa c/m trên ta có:

\(\frac{1}{1+a}+\frac{1}{1+b}+2015ab\le\frac{2}{1+\sqrt{ab}}+2015ab\)

Cần chứng minh \(\frac{2}{1+\sqrt{ab}}+2015ab\le2016\)

\(\Leftrightarrow2015\sqrt{ab}\left(ab-1\right)+\sqrt{ab}\left(\sqrt{ab}-1\right)+2014ab\le2014\) ( luôn đúng do \(ab\le1\))

Đẳng thức xảy ra khi \(a=b=1\)

Thắng Nguyễn CTV 27/05 lúc 22:21

Cần chứng minh \(\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\),theo BĐT AM-GM ta có: 

\(\sqrt{\frac{y+z}{x}}\le\frac{x+y+z}{2x}=\frac{\frac{y+z}{x}+1}{2}\ge\sqrt{\frac{y+z}{x}}\) (đúng)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" ko xảy ra do ko có x;y;z thỏa mãn 

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=1\) nên ta có ĐPCM

Thắng Nguyễn CTV Hôm qua lúc 07:18

Min:dấu "=" ko xảy ra nên ko có trg hợp dấu "=" tức là nó > đó :v

Min Hôm qua lúc 06:47

Đề cho đâu có trường hợp dấu '=' đâu Thắng Nguyễn

Trà My CTV 27/05 lúc 11:11

a) \(VT=\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(VT=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{a^2}{c+a}+\frac{b^2}{c+a}+\frac{c^2}{c+a}\)

\(VT=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel:

\(VT=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

<=>\(VT\ge\frac{a+b+c}{2}+\frac{a+b+c}{2}+\frac{a+b+c}{2}=\frac{3}{2}\left(a+b+c\right)=VP\) (đpcm)

Dấu "=" xảy ra khi a=b=c=1

Trà My CTV 27/05 lúc 10:34

c) Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2ab+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=>\(P\ge\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)

Vậy Pmin=9 <=> a=b=c=1/3

Trà My CTV 27/05 lúc 10:23

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

sãkaya 26/05 lúc 17:54

Ta có \(\sqrt{16ab}\le2a+2b\)

\(\Leftrightarrow16ab\le\left(2a+2b\right)^2\)

\(\Leftrightarrow16ab\le4a^2+8ab+4b^2\)

\(\Leftrightarrow0\le4a^2-8ab+4b^2\)

\(\Leftrightarrow0\le\left(2a-2b\right)^2\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b\)

Ba Thị Bích Vân 26/05 lúc 19:32

16ab<=(2a+2b)^2

16ab<=4a+8ab+4b

0<=4a-8ab+4b

0<=(2a-2b)^2

Online Math 26/05 lúc 17:58

Đúng nhưng ko hay lắm

sãkaya 26/05 lúc 16:37

2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1) 

Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)

\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

Cao Vương 26/05 lúc 21:17

cám ơn nhiều.

Thắng Nguyễn CTV 25/05 lúc 22:10

bài này khá khó chịu tui làm bên h r` thì phải mà giờ lật lại có toi bn rảnh thì vô đây tìm nhé h.vn/vip/thangbnsh

Thắng Nguyễn CTV 25/05 lúc 21:59

Từ \(2a+2b+2c=3abc\)

\(\Leftrightarrow\frac{2}{3bc}+\frac{2}{3ac}+\frac{2}{3ab}=1\left(1\right)\)

Khi đó \(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3\sqrt[3]{\frac{b}{a^2}\cdot\frac{c}{b^2}\cdot\frac{a}{c^2}}=3\sqrt[3]{\frac{1}{abc}}\)

\(P_{Min}\) xảy ra khi \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}=3\sqrt[3]{\frac{1}{abc}}\forall a=b=c\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow a=b=c=\sqrt{2}\)

Khi đó \(P_{Min}=3\sqrt[3]{\frac{1}{abc}}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}=\frac{3\sqrt{2}-6}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{2}\)

Lê Minh Đức 26/05 lúc 18:39

Bài này giải như này cơ:

\(2a+2b+2c=3abc\)\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{3}{2}\)

\(P=\frac{\left(a-1\right)+\left(b-1\right)}{a^2}+\frac{\left(b-1\right)+\left(c-1\right)}{b^2}+\frac{\left(c-1\right)+\left(a-1\right)}{c^2}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(a-1\right)\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+\left(b-1\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\left(c-1\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{2\left(a-1\right)}{ac}+\frac{2\left(b-1\right)}{ab}+\frac{2\left(c-1\right)}{bc}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)

\(\ge\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}-3=\sqrt{3.\frac{3}{2}}-3=\frac{3\sqrt{2}-6}{2}\)

Vậy \(minP=\frac{3\sqrt{2}-6}{2}\Leftrightarrow a=b=c=\sqrt{2}\)

Trần Thùy Dung CTV Hôm qua lúc 21:19

cả 2 cách đều hay :*

Trần Thùy Dung CTV 24/05 lúc 21:56

Đặt \(b+c+d=x;c+d+a=y;a+b+d=z;a+b+c=t\)

\(a=\frac{y+z+t-2x}{3}\)

Tương tự :\(b=\frac{x+z+t-2y}{3}\)

\(c=\frac{x+y+t-2z}{3}\)

\(d=\frac{y+x+z-2t}{3}\)

Đặt \(M=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

Thay vào biểu thức ta có :

\(M=\frac{\frac{y+z+t-2x}{3}}{x}+\frac{\frac{x+z+t-2y}{3}}{y}+\frac{\frac{x+y+t-2z}{3}}{z}+\frac{\frac{y+x+z-2t}{3}}{t}\)

\(=\frac{1}{3}\left(\frac{y+z+t-2x}{x}+\frac{x+z+t-2y}{y}+\frac{x+y+t-2z}{z}+\frac{x+z+y-2t}{t}\right)\)

\(=\frac{1}{3}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{t}{x}+\frac{x}{t}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)+\left(\frac{t}{y}+\frac{y}{t}\right)+\left(\frac{t}{z}+\frac{z}{t}\right)-8\right]\)

Sử dụng BĐT Cô-si suy ra \(Min_M=\frac{1}{3}.\left(12-8\right)=\frac{4}{3}\)

Dấu bằng xảy ra khi x = y = z = t hay \(b+c+d=a+b+c=c+d+a=b+d+a\) ( tự giải ra a=b=c=d)

Đặt \(N=\frac{b+c+d}{a}+\frac{c+a+d}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)

\(=\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{d}{a}+\frac{a}{d}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{d}{c}+\frac{c}{d}\right)+\left(\frac{b}{d}+\frac{d}{b}\right)\)

Sử dụng Cô-si ra \(N\ge12\)

Dấu bằng xảy ra khi a=b=c=d ( tự giải ).

Do đó \(S=M+N\ge\frac{4}{3}+12=13\frac{1}{3}\)

Dấu bằng xảy ra khi \(a=b=c=d\)

\(\)

sãkaya 23/05/2017 lúc 20:58

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

sãkaya 23/05/2017 lúc 20:11

\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Phương Phươngg 23/05/2017 lúc 20:19

hihih ~ e mới lớp 8 ~ năm sau nha

Kẻ Huỷ Diệt 23/05/2017 lúc 20:17

cauchy - schwarz là bđt Cauchy à bạn

o0o I am a studious person o0o CTV 23/05/2017 lúc 18:44

Cộng 2 vế BĐT :

\(a-2\sqrt{a}+\frac{1}{4}\ge\sqrt{\frac{1}{a}}-\frac{1}{a}+\frac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2\ge\frac{1}{a}-\frac{1}{\sqrt{a}}-\frac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2\ge\left(\sqrt{\frac{1}{a}}-1\right)-\frac{7}{4}\)( 2 )

Ta có : \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)

\(\left(\sqrt{\frac{1}{a}}-1\right)^2-\frac{7}{4}\le\frac{-7}{4}< 0\)

=>  ( 2 ) đúng => BDDT đúng

alibaba nguyễn 23/05/2017 lúc 19:49

Không phải 1 câu. Đang nói câu này đề sai. Câu 633 chỉ cần cosi là ra

alibaba nguyễn 23/05/2017 lúc 19:41

Đề sai.

Bạn thế a = 1 sẽ thấy ngay

\(1-2.\sqrt{1}\ge\sqrt{\frac{1}{1}}-\frac{1}{1}\)

\(\Leftrightarrow-1\ge0\) cái này đúng bằng niềm tin ah.

o0o I am a studious person o0o CTV 23/05/2017 lúc 18:30

Hình như bạn thiếu điều \(a\ge1\)

Nữ Phù Thuỷ Bóng Đêm 23/05/2017 lúc 18:25

Toán bất đẳng thức khó làm mình làm khôg nói

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: