K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\dfrac{1}{20\cdot23}+\dfrac{1}{23\cdot26}+...+\dfrac{1}{77\cdot80}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{20\cdot23}+\dfrac{3}{23\cdot26}+...+\dfrac{3}{77\cdot80}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{80}\right)=\dfrac{1}{3}\cdot\dfrac{3}{80}=\dfrac{1}{80}< \dfrac{1}{9}\)

19 tháng 3

Đặt \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+\ldots+\frac{1}{77.80}\)

\(\) \(A=\frac13.\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+\cdots+\frac{1}{77.80}\right)\)

\(A=\frac13.\left(\frac{23-20}{20.23}+\frac{26-23}{23.26}+\frac{29-26}{26.29}+\cdots+\frac{80-77}{77.80}\right.\)

\(\) \(A=\frac13.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+\cdots+\frac{1}{77}-\frac{1}{80}\right)\)

\(A=\frac13.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(A=\frac13.\frac{3}{80}\)

\(\) \(A=\frac{1}{80}\)

Ta thấy, \(\frac{1}{80}<\frac19\)

\(\Rightarrow A<\frac19\)

A=1/20*23+1/23*26+...+1/77*80

=1/3(1/20-1/23+1/23-1/26+...+1/77-1/80)

=1/3*3/80=1/80<1/79

9 tháng 4 2019

\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)

\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)

\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)

\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)

\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)

\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)

Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)

Vậy : ...

9 tháng 4 2019

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

16 tháng 4 2018

Đặt \(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) ta có : 

\(A=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(A=3.\frac{3}{80}\)

\(A=\frac{9}{80}< 1\) ( tử bé hơn mẫu ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

12 tháng 4 2016

đặt A=9/20x23+9/23x26+...+9/77x80

<=>\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)

\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\Rightarrow A=3\cdot\frac{3}{80}\)

\(\Rightarrow A=\frac{9}{80}\)

19 tháng 3

ngu si dốt nát


18 tháng 4 2016

đặt A=32/20x23+32/23x26+...+32/77x80

\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3\cdot\frac{3}{80}\)

\(=\frac{9}{80}\)

18 tháng 4 2016

giúp với

2 tháng 2 2019

a) \(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2007x2009}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2009}\right)=\frac{1}{2}\cdot\frac{2008}{2009}=\frac{1004}{2009}\)

....

các bài cn lại bn lm tương tự nha

19 tháng 8 2023

b, \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)

3A = \(\dfrac{1}{6}+\dfrac{1}{18}+...+\dfrac{1}{330}\)

3A-A = \(\dfrac{1}{6}-\dfrac{1}{990}\)

2A = 82/495

A =82/495 : 2 

A=41/495

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)