K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

26 tháng 12 2023

\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)

\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)

\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)

\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)

Đẳng thức xảy ra khi a=b=c=1/3.

Vậy GTNN của P là 33.

1 tháng 1

áp dụng bất đẳng thức phụ \(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{4}{a+b}\)<=>(a-b)2≥0 (luôn đúng)
Ta có P≥\(\dfrac{\left(3+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\)=(3+\(\sqrt{2}\))2
Dấu = xảy ra <=> a=b=c=1/3

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\ \geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\ =\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\ =18+\frac{1}{2(ab+bc+ac)}\)

Áp dụng BĐT AM-GM:

$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$

$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$

$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$

4 tháng 6 2019

Theo đề : a2 + 4b2 = 9 => (a + 2b)2 = 4ab + 9 <=> 4ab = (a + 2b)2 - 9

Ta có : T = \(\frac{ab}{a+2b+3}\)=> 4T = \(\frac{4ab}{a+2b+3}\)\(\frac{\left(a+2b\right)^2-9}{a+2b+3}\)=\(\frac{\left(a+2b+3\right)\left(a+2b-3\right)}{a+2b+3}\)= a + 2b -3

Mặt khác a + 2b \(\le\) \(\sqrt{2\left(a^2+4b^2\right)}\) = \(\sqrt{2.9}\)\(3\sqrt{2}\)=>  \(T\le\frac{3\sqrt{2}-3}{4}\)

Dấu "=" xảy ra khi a = 2b = \(\frac{3\sqrt{2}}{2}\)=> b = \(\frac{3\sqrt{2}}{4}\)

Vậy giá trị nhỏ của T là \(\frac{3\sqrt{2}-3}{4}\)tại a = \(\frac{3\sqrt{2}}{2}\)và b = \(\frac{3\sqrt{2}}{4}\)

Có gì sai mọi người cmt cho mk bt nha :>