K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Vì a;b;c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}}\)(bất đẳng thức tam giác)

\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)

\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)

Cộng vế với vế ta được :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)

6 tháng 1 2017

a=12 b=1 c=4

k đi

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

NV
29 tháng 1 2021

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)

Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)

Nhân vế với vế:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều

12 tháng 8 2022

Giáo viên ơi,cho em hỏi là còn cách nào khác ngoài bất đẳng thức cosi ko ạ?

 

21 tháng 9 2019

GIẢI

 Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)

 Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)

          \(\frac{b}{c+a}\le\frac{b}{b+c}\)

           \(\frac{c}{a+b}\le\frac{c}{b+c}\)

Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)

Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)

Chúc bạn học tốt !!!

21 tháng 9 2019

GIẢI

 Giả sử : a\ge b\ge c&gt;0a≥b≥c>0 thì a+b\ge a+c\ge b+ca+b≥a+c≥b+c

 Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca​=b+ca​

          \frac{b}{c+a}\le\frac{b}{b+c}c+ab​≤b+cb​

           \frac{c}{a+b}\le\frac{c}{b+c}a+bc​≤b+cc​

Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca​+c+ab​+c+bc​≤b+ca+b+c​

Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1&lt; 1+1=2b+ca​+c+ab​+c+bc​≤b+ca​+1<1+1=2

Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}&lt; 2b+ca​+c+ab​+c+bc​<2

1 tháng 8 2017

a,b,c thuộc N nữa phương tề. 

giả sử b và c đều ko chia hết cho 3 

=> b^2;c^2 chia 3 dư 1 hoặc dư 2 

=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên) 

=> a^2 có dạng 3k+2 hoặc 3k+1 

xét các k=1;2;3 thì a đều ko thuộc N => vô lý 

=> DPCM 

làm dc rk thôi, ko làm dc nữa 

---kenny cold----

Nguồn:myself

cách 2

b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên. 

Còn trong các trường hợp khác thì không, 

thí dụ: 

a = 5 thì b = 3 và c =4 vậy b chia hết cho 3. 

a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3

cách 3

nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3? 

Đề này có vấn đề rồi ví dụ nhé : 

Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 . 

Tam giác ABC vuông cạnh huyền BC = a 

cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3

20 tháng 1 2023

Ta có bất đẳng thức sau 

a2 + b2 + c2 \(\ge\) ab + bc + ca (1)

Dấu "=" xảy ra <=> a = b = c

Thật vậy (1) <=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge0\) 

  <=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (bđt này luôn đúng)

Khi đó ta được (1) <=> 2(a2 + b2 + c2\(\ge\) 2(ab + bc + ca) 

<=> 3(a2 + b2 + c2\(\ge\) 2ab + 2bc + 2ca + a2 + b2 + c2 

<=> 3(a2 + b2 + c2\(\ge\) (a + b + c)2 

=> -(a2 + b2 + c2\(\le\dfrac{(a+b+c)^2}{3}\)

Ta có \(P=\dfrac{b+c}{b+c-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\)

\(=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}+3\)

\(=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}+3\)

\(\ge\dfrac{\left(a+b+c\right)^2}{ab+ac-a^2+ab+bc-b^2+ac+bc-c^2}+3\) (BĐT Schwarz)

\(=\dfrac{\left(a+b+c\right)^2}{2ab+2ac+2bc-a^2-b^2-c^2}+3\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-2\left(a^2+b^2+c^2\right)}+3\)

\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-\dfrac{2}{3}\left(a+b+c\right)^2}+3=\dfrac{1}{1-\dfrac{2}{3}}+3=6\) (đpcm) 

 

2 tháng 5 2016

de sai ban a