K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Ta đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}\Rightarrow ab=1}\)

\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)

Ta có

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)

\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)

\(\ge2+2=4\)

19 tháng 2 2017

bạn chưa chỉ ra dấu bằng xảy ra khi nào

NV
13 tháng 5 2020

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow z-y=a-b\)\(ab=1\)

\(VT=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}\)

\(VT=a^2+b^2+\frac{1}{\left(a-b\right)^2}=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2ab=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(VT\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)\left(x-z\right)=1\\\left(y-z\right)^2=1\end{matrix}\right.\)

9 tháng 8 2016

\(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)\(x-y=\left(x+z\right)-\left(y+z\right)=a-b\)

\(ab=1\Rightarrow b=\frac{1}{a}\)

\(A=VT=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\frac{1}{a^2}+a^2\)

\(=\frac{a^2}{\left(a^2-1\right)^2}+a^2+\frac{1}{a^2}\)

\(t=a^2>0\)

\(A=\frac{t}{\left(t-1\right)^2}+t+\frac{1}{t}\)

\(A-4=\frac{\left(t^2-3t+1\right)^2}{t\left(t-1\right)^2}\ge0\)

\(\Rightarrow A\ge4\)

Dấu bằng xảy ra khi \(t=a^2=\frac{3\pm\sqrt{5}}{2}\)\(\Leftrightarrow a=\sqrt{\frac{3\pm\sqrt{5}}{2}}\)

\(\Leftrightarrow\hept{\begin{cases}a=x+z=\sqrt{\frac{3+\sqrt{5}}{2}}\\b=y+z=\sqrt{\frac{3-\sqrt{5}}{2}}\end{cases}}\) và hoán vị còn lại 

Hệ trên có vô số nghiệm, chẳng hạn

\(\hept{\begin{cases}z=\frac{1}{10}\\x=\sqrt{\frac{3+\sqrt{5}}{2}}-\frac{1}{10}\\y=\sqrt{\frac{3-\sqrt{5}}{2}}-\frac{1}{10}\end{cases}}\)

9 tháng 8 2016

giúp với.

mình bị lộn \(\frac{1}{\left(x-y\right)^2}\)

NV
26 tháng 6 2020

Nếu \(\frac{1}{\left(x-y\right)^2}\) thì nó đây:

Câu hỏi của Nguyễn Ngọc Lan - Toán lớp 9 | Học trực tuyến

NV
10 tháng 6 2020

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow ab=1\)

\(S=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}=a^2+b^2+\frac{1}{\left(a-b\right)^2}\)

\(S=a^2+b^2-2ab+\frac{1}{\left(a-b\right)^2}+2=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(S\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\) (đpcm)

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

9 tháng 1 2017

lm dc r` chứ j thôi nhé :))

9 tháng 1 2017

trả lời kiểu ji vậy

26 tháng 8 2016

Ta có:

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A được:

\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)\)

\(=2\)(do xy+yz+xz=1)

=>Đpcm

26 tháng 8 2016

Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.

16 tháng 5 2018

\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)

\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)

Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\)         (*)

Đặt (x;y;z) ------->  \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Suy ra (*)  <=>  \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)

Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)

Đẳng thức xảy ra <=> x = y = z = 1 

16 tháng 5 2018

Nguồn : Trần Thắng