K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Đề bài mâu thuẫn quá. Cả x,y,z đều lớn hơn 0 thì làm sao xyz = 0 được

9 tháng 11 2016

Câu hỏi của Lâm Minh Anh - Toán lớp 9 - Học toán với OnlineMath

21 tháng 2 2017

x,y,z là số thực à khó đấy số dương thì mk còn làm đc 

chứ số thực mk chịu

21 tháng 2 2017

Biến đổi tương đương ta CM được BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có: \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{xyz\left(x+y+z\right)}\)

CM tương tự với các phân thức còn lại

Cộng vế theo vế các BĐT đó ta được:

\(A\le\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)

Vậy Max A=1 <=> x=y=z=1

18 tháng 9 2016

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

18 tháng 12 2015

bài này dễ nhưng bạn phải chứng minh bđt này đã:

\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

với a;b;c;d là các số dương

bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)

Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé 

ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)

\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)

Tương tự ta cm được 

\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)

dấu "=" khi x=y=z

 

 

 

2 tháng 9 2018

Ta đi c/m BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) (*)

Thật vậy (*) \(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}\)(Do xyz=1)

Tương tự: \(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)};\frac{1}{z^3+x^3+1}\le\frac{1}{zx\left(x+y+z\right)}\)

\(\Rightarrow A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Vậy Max A = 1. Dấu "=" xảy ra <=> x=y=z=1.

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Lời giải:

Đề cần bổ sung điều kiện $x,y,z>0$

Xét hiệu:

$x^3+y^3-xy(x+y)=(x-y)^2(x+y)\geq 0, \forall x,y>0$

$\Rightarrow x^3+y^3\geq xy(x+y)$

$\Rightarrow x^3+y^3+1=x^3+y^3+xyz\geq xy(x+y+z)$

$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$

Hoàn toàn tương tự:

$\frac{1}{y^3+z^3+1}\leq \frac{x}{x+y+z}; \frac{1}{z^3+x^3+1}\leq \frac{y}{x+y+z}$

Cộng theo vế các BĐT trên thu được:

$A\leq \frac{x+y+z}{x+y+z}=1$

Vậy $A_{\max}=1$ khi $x=y=z=1$

12 tháng 12 2015

cm bai toan phu 

a3+b3\(\ge ab\left(a+b\right)\)

ta co \(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

=>bai toan phu dung 

=>\(a^3+b^3\ge ab\left(a+b\right)\)

=>a3+b3+1\(\ge ab\left(a+b+c\right)\)

=>A\(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{z}{\left(x+y+z\right)}+\frac{x}{\left(x+y+z\right)}+\frac{y}{\left(x+y+z\right)}=1\)

MaxA=1<=>x=y=z=1

21 tháng 2 2020

a) + \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+1\ge\left(x+y\right)\left(2xy-xy\right)+xyz=xy\left(x+y+z\right)\)

Dấu "=" \(\Leftrightarrow x=y\)

+ Tương tự : \(y^3+z^3+1\ge yz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow y=z\)

\(z^3+x^3+1\ge xz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow x=z\)

Do đó: \(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" \(\Leftrightarrow x=y=z=1\)

b) Bn đã từng hỏi và cũng là mk trả lời hehe

21 tháng 2 2020

tại mình không làm được ý a) nên mình sao chép cả bài luôn

11 tháng 5 2018

áp dụng bđt cosi ta có:

\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)

tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)

dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)

\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)

\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1

khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

vậy max A là 1 khi x=y=z=1

11 tháng 5 2018

Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)

Dấu = xra khi a=b=c và abc=1 =>a=b=c=1