K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2022

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

30 tháng 3 2022

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

29 tháng 3 2022

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)

Dấu "=" ⇔ a=b=c=3

NV
29 tháng 3 2022

Áp dụng BĐT Cô-si:

\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\) 

Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)

Cộng vế:

\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

NV
29 tháng 3 2022

Kiểm tra lại mẫu số của 3 phân thức

29 tháng 3 2022

Mẫu số của \(b+1\ne c+2,a+2.\)

Xem lại đề bạn

14 tháng 5 2018

Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)

Suy ra 

\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)

Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)

10 tháng 2 2019

Cách khác nhá.

Lời giải

Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)

Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)

Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
29 tháng 3 2022

Áp dụng BĐT Cô-si:

\(a^2+3\ge2\sqrt{3a^2}=2\sqrt{3}a\)

Tương tự: \(b^2+3\ge2\sqrt{3}b\) ; \(c^2+3\ge2\sqrt{3}c\)

Cộng vế: \(a^2+b^2+c^2+9\ge2\sqrt{3}\left(a+b+c\right)\)

\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+9}{2\sqrt{3}}=\dfrac{9+9}{2\sqrt{3}}=3\sqrt{3}\)

\(\Rightarrow-\left(a+b+c\right)\ge-3\sqrt{3}\)

Tiếp tục áp dụng BĐT Cô-si:

\(\dfrac{a^4}{b+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(b+2\right)\ge2\sqrt{\dfrac{9a^4\left(b+2\right)}{\left(b+2\right)\left(2+\sqrt{3}\right)^2}}=\dfrac{6a^2}{2+\sqrt{3}}\) 

Tương tự:

\(\dfrac{b^4}{c+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(c+2\right)\ge\dfrac{6b^2}{2+\sqrt{3}}\)

\(\dfrac{c^4}{a+2}+\dfrac{9}{\left(2+\sqrt{3}\right)}\left(a+2\right)\ge\dfrac{6c^2}{2+\sqrt{3}}\)

Cộng vế:

\(P+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{6}{2+\sqrt{3}}\left(a^2+b^2+c^2\right)=\dfrac{54}{2+\sqrt{3}}\)

\(\Rightarrow P\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}.\left(3\sqrt{3}+6\right)\)

\(\Rightarrow P\ge\dfrac{27}{2+\sqrt{3}}=27\left(2-\sqrt{3}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

29 tháng 3 2022

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)

Khi đó \(\frac{a^4}{b+2}=\frac{1}{3}\)

Ta cần ghép \(\frac{a^4}{b+2}\)với hạng tử \(k\left(b+2\right)\)thỏa mãn khi Cô-si thì dấu "=" xảy ra khi \(a=b=1\)

Lại có \(b+2=3\)

Đồng thời khi Cô-si dấu "=" xảy ra khi \(\frac{a^4}{b+2}=k\left(b+2\right)\)hay \(\frac{1}{3}=k.3\)\(\Leftrightarrow k=\frac{1}{9}\)

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a^4}{b+2}\)và \(\frac{b+2}{9}\), ta có:

\(\frac{a^4}{b+2}+\text{​​}\frac{b+2}{9}\ge2\sqrt{\frac{a^4}{b+2}.\frac{b+2}{9}}=\frac{2a^2}{3}\)

Tương tự, ta có \(\frac{b^4}{c+2}+\text{​​}\frac{c+2}{9}\ge2\sqrt{\frac{b^4}{c+2}.\frac{c+2}{9}}=\frac{2b^2}{3}\)và 

\(\frac{c^4}{a+2}+\text{​​}\frac{a+2}{9}\ge2\sqrt{\frac{c^4}{a+2}.\frac{a+2}{9}}=\frac{2c^2}{3}\)

CỘng vế theo vế từng BĐT, ta được \(P+\frac{a+2+b+2+c+2}{9}\ge\frac{2\left(a^2+b^2+c^2\right)}{3}\)

\(\Leftrightarrow P+\frac{\left(a+b+c\right)+6}{9}\ge2\)(vì \(a^2+b^2+c^2=3\)\(\Leftrightarrow P\ge2-\frac{\left(a+b+c\right)+6}{9}\)(1)

Ta chứng minh BĐT phụ \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)(với \(a,b,c>0\))

Thật vậy, BĐT này \(\Leftrightarrow\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vậy BĐT phụ được chứng minh \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3.3}=3\)(2)

Từ (1) và (2) \(\Rightarrow P\ge2-\frac{3+6}{9}=1\)\(\Rightarrow min_P=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

29 tháng 3 2022

t ko bic

2 tháng 12 2017

\(\sqrt[4]{b^3}\)

3 tháng 5 2020

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

22 tháng 11 2017

Mk cx đang định hỏi câu này

23 tháng 2 2019

\(a+b=4ab\le\left(a+b\right)^2\)

\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a^2}{4b^2a+a}+\frac{b^2}{4a^2b+b}\)

\(\ge\frac{\left(a+b\right)^2}{4ab\left(a+b\right)+\left(a+b\right)}=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)^2}=\frac{1}{2}\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)

23 tháng 2 2019

Cảm ơn bạn nhé.

29 tháng 3 2022

Lời giải

Bất đẳng thức cần chứng minh được viết lại thành

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$

Ta chứng minh bất đẳng thức sau đây

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Thật vậy, bất đẳng thức trên tương đương với

$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$

Hiển nhiên đúng với a là số thực dương.

Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$

Cộng theo vế các bất đẳng thức trên ta được

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.

Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.

Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$

Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.

Để ý là với cách làm trên ta chưa sử dụng điều kiện .

Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$

Trong đó m và n là các hệ số chưa xác định.

Thiết lập tương tự với các biến b và c ta được

$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$

Cộng theo vế các bất đẳng thức trên ta có

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$

Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$

Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$

Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

29 tháng 3 2022

trời ơi ? hack