K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

2x +1 là số lẻ nên (2x+1)là số chính phương lẻ 

120 < (2x+1)2 < 200 => (2x+1)= 121 ; 169

+) (2x+1)= 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6

+) (2x+1)= 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7

Vậy....

1 tháng 1 2016

nswfhceqohvewoi

 

NG
10 tháng 1

Số tự nhiên cần tìm là 3.
Giải thích
3 . 3 - 2 = 9 - 2 = 7

7 = 7

11 tháng 1

um theo mình là 28 vì hồi sáng thầy mới sữa bài , mà cũng cảm ơn bạn nhiều nha

13 tháng 9 2016

Câu hỏi của Khả Vy Quách - Toán lớp 8 - Học toán với OnlineMath

13 tháng 9 2016

Gọi số cần tìm là ab (a,bN, 0<a<10, 0b<10), theo bài ra:

ab.135=m2(mN)<=>(10a+b).32.3.5=m2<=>[9a+(a+b)].32.3.5=m2, vì (3,5)=1 nên 9a+(a+b) phải chia hết cho cả 3 và 5.

- Để 9a+(a+b)=10a+b chia hết cho 5 thì b phải = 5

- Để 9a+(a+b) chia hết cho 3 thì a+b=a+5 phải chia hết cho 3, khi đó a=1,4,7

Thử lại thấy a=1 là được. Vậy số cần tìm là 15

28 tháng 5 2016
  • HỌC TOÁN
  • KIỂM TRA
  • BÁO CÁO
  • THÔNG TIN

Bài toán 104

Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.

Ta có:

  - Số \(14\) không phải là số chính phương

  - Số \(144\) là số chính phương vì \(144=12\times12=12^2\)

  - Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .

Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?

----------------------

Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.

 

Xem thêm:

  • Bài toán 103
  • Bài toán 102
  • Bài toán 101
  • Bài toán 100
  • Bài toán 99

 

Hoàng Thị Thu Huyền DMCA.com Protection Status                  Gửi ý kiến 23 bình luận
  King Math09:38:50 ngày 28/05/2016 Trả lời

Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:

a, $n<4$n<4 

Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.

b, $n\ge4$n4 

Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(bZ) 

Vì $10000\vdots16$1000016 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12

Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an4 nhưng không chia hết cho 16 nên:

$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$ $a_n$an chia 16 dư 4. Vô lý.

Vậy $a_n$an không phải là số chính phương.

Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương