K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Từ a4 + b4 \(\ge\)2a2b2 cộng a2 + b2 vào 2 vế

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

Tương tự\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

Từ đó suy ra \(a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2\)

12 tháng 11 2021

Cái cuối là \(a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)nha mình nhầm

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Lời giải:

Kiểu như bạn muốn biến đổi $a^4-b^4$ về dạng có liên quan đến $a+b,ab$ ấy hả?

$a^4-b^4=(a^2-b^2)(a^2+b^2)=(a-b)(a+b)[(a+b)^2-2ab]$

Nếu $a^4\geq b^4$ thì: $a^4-b^4=\sqrt{(a-b)^2}(a+b)[(a+b)^2-2ab]$

$=\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$

Nếu $a^4< b^4$ thì $a^4-b^4=-\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$

5 tháng 5 2017

\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{\left(a+b\right)^2}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{a^2+2ab+b^2}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}-\frac{a^2+2ab+b^2}{8}\ge\)

\(\Leftrightarrow\frac{4a^2-4ab+4b^2-a^2-2ab-b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3a^2-6ab+3b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3\left(a-b\right)^2}{8}\ge0\) (luôn đúng)

Vậy \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

1 tháng 2 2017

Áp dụng bđt Cauchy Schwarz dạng Engel ta có:

\(\frac{a^2+b^2+c^2}{3}=\)(\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)).\(\frac{1}{3}\ge\)\(\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\)\(\left(\frac{a+b+c}{3}\right)^2\)(đpcm)

Dấu "=" xảy ra khi a = b = c

13 tháng 9 2020

            Bài làm :

Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel ta có:

\(\frac{a^2+b^2+c^2}{3}=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\right).\frac{1}{3}\ge\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\left(\frac{a+b+c}{3}\right)^2\)

Dấu "=" xảy ra khi a = b = c

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

18 tháng 7 2017

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo