K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

tham khảo:        Câu hỏi của Nguyễn Thùy Trang     

https://olm.vn/hoi-dap/detail/240354680477.html

18 tháng 4 2019

bt \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2+b^2}{2ca}\)

NV
7 tháng 5 2021

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng

6 tháng 1 2017

a, Ta có : M-1= \(\frac{a^2+b^2-c^2}{2ab}-1+\frac{b^2+c^2-a^2}{2bc}-1+\frac{a^2+c^2-b^2}{2ac}+1\)=\(\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{\left(b-c\right)^2-a^2}{2bc}+\frac{\left(a+c\right)^2-b^2}{2ac}\)

=\(\frac{\left(a-b-c\right)\left(a-b+c\right)}{2ab}+\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}+\frac{\left(a+c-b\right)\left(a+b+c\right)}{2ac}\)

=\(\frac{\left(a-b-c\right)\left(a-b+c\right)c+\left(b-c-a\right)\left(b-c+a\right)a+\left(a+c-b\right)\left(a+c+b\right)b}{2abc}\)

=\(\frac{\left(ac-bc-c^2\right)\left(a-b+c\right)-\left(a+c-b\right)\left(ba-ca+a^2\right)+\left(a+c-b\right)\left(ab+bc+b^2\right)}{^{ }2abc}\)

=\(\frac{\left(a+c-b\right)\left(ac-bc-c^2-ba+ca-a^2+ab+bc+b^2\right)}{^{ }2abc}\)

=\(\frac{\left(a+c-b\right)\left[b^2-\left(a-c\right)^2\right]}{2abc}=\frac{\left(a+c-b\right)\left(b-a+c\right)\left(b+a-c\right)}{2abc}\) (*)

a, vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a,b,c>0 và a+b-c>,a+c-b>0,

b+c-a>0 \(\Rightarrow\) (*) >0 nên M-1>0 \(\Rightarrow\)M>0

b,Với M=1, ta có M-1 = (*)=0 \(\Rightarrow\)(a+c-b)(b-a+c)(b+a-c)=0

\(\Leftrightarrow\left[\begin{matrix}a+b=c\\a+c=b\\b+c=a\end{matrix}\right.\)

. TH1 : a+b=c\(\Rightarrow\) \(\frac{a^2+b^2-c^2}{2ab}-1=\frac{\left(a-b\right)^2-\left(a+b\right)^2}{2ab}=\frac{-4ab}{2ab}=-2\)\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}=-1\)

mặt khác a+b=c thì a-c=b \(\Rightarrow\frac{a^2+c^2-b^2}{2ac}+1=\frac{\left(a+c\right)^2-\left(a-c\right)^2}{2ac}=\frac{4ac}{2ac}=2\)

\(\Rightarrow\frac{a^2+c^2-b^2}{2ac}=1\)\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)(đpcm)

. TH2 và TH3 tương tự như trường hợp 1 ta chứng minh được bài toán

7 tháng 1 2017

Cảm ơn bạn @Vị Thần Lang Thang.

25 tháng 1 2020

a,

Đặt: \(\hept{\begin{cases}\frac{a^2+b^2-c^2}{2ab}=x\\\frac{b^2+c^2-a^2}{2bc}=y\\\frac{c^2+a^2-b^2}{2ac}=z\end{cases}}\)

a, Ta chứng minh \(x+y+z>1\)hay \(x+y+z-1>0\left(1\right)\)

Ta có BĐT \(\left(1\right)\Leftrightarrow\left(x+1\right)+\left(y-1\right)+\left(z-1\right)>0\left(2\right)\)

Ta có: \(x+1=\frac{a^2+b^2-c^2}{2ab}+1=\frac{\left(a+b\right)^2-c^2}{2ab}=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}\)

Và: \(y-1=\frac{b^2+c^2-a^2}{2bc}-1=\frac{\left(b-c\right)^2-a^2}{2bc}=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}\)

Và: \(z-1=\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(c-a\right)^2-b^2}{2ac}=\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ac}\)

\(\left(2\right)\Leftrightarrow\left(a+b-c\right)\left[\frac{c\left(a+b+c\right)+a\left(b-c-a\right)-b\left(c-a+b\right)}{2abc}\right]>0\)

\(\Leftrightarrow\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]>0\left(abc>0\right)\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)>0\)

BĐT cuối đúng vì \(a,b,c\)thỏa mãn \(BĐT\Delta\left(đpcm\right)\)

b, Để \(A=1\Leftrightarrow\left(z+1\right)+\left(y-1\right)+\left(z-1\right)=0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)=0\)

Từ trên ta suy ra được 3 trường hợp:

  • Trường hợp 1: \(a+b-c=0\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\\z-1=0\end{cases}}\hept{\Rightarrow\begin{cases}x=-1\\y=-1\\z=1\end{cases}}\)
  • Trường hợp 2:\(a-b+c=0\Rightarrow\hept{\begin{cases}x-1=\frac{\left(a-b-c\right)\left(a-b+c\right)}{2ab}=0\\y-1=0\\z+1=\frac{\left(c+a-b\right)\left(c+a+b\right)}{2ca}\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)
  • Trường hợp 3: \(-a+b+c=0\Rightarrow\hept{\begin{cases}x-1=0\\y+1=\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-1\\z=1\end{cases}}}\)

Từ các trường trên ta thấy trường hợp nào cũng có 2 trong 3 phân thức \(x,y,z=1\)và còn lại \(=-1\)

14 tháng 6 2021

BĐT cần CM tương đương:

\(3-VT\ge1\)

\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)

\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)

\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)

Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)

... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng

=> BĐT trên đúng

=> đpcm

Dấu "=" xảy ra khi: a = b = c