K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Đặt \(x=1-a\)\(y=1-b\)\(z=1-c\)

Ta có :  \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\) 

\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)

\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)

Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

15 tháng 3 2017

\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)

\(P=\dfrac{1}{a\left[2b+2c-\left(a+b+c\right)\right]}+\dfrac{1}{b\left[2c+2a-\left(a+b+c\right)\right]}+\dfrac{1}{c\left[2a+2b-\left(a+b+c\right)\right]}\)

\(P=\dfrac{1}{a\left(b+c-a\right)}+\dfrac{1}{b\left(c+a-b\right)}+\dfrac{1}{c\left(a+b-c\right)}\)

\(P=\dfrac{1}{ab+ac-a^2}+\dfrac{1}{bc+ab-b^2}+\dfrac{1}{ca+bc-c^2}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{-a^2-b^2-c^2+2ab+2bc+2ca}=\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)\ge-\left(ab+bc+ca\right)\)

\(\Rightarrow-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]\le ab+bc+ca\)

\(\Rightarrow\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\ge\dfrac{9}{ab+bc+ca}\)

Từ ( 1 )

\(\Rightarrow P\ge\dfrac{9}{ab+bc+ca}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow1\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{1}{3}\ge ab+bc+ca\)

\(\Rightarrow27\le\dfrac{9}{ab+bc+ca}\)

\(\Rightarrow P\ge27\)

Vậy \(P_{min}=27\)

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

16 tháng 4 2021

\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).

Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+c^2\ge2ac\).

\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).

\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)

\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).

\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).

\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)

\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .

Chứng minh tương tự, ta được:

\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)

Chứng minh tương tự, ta dược:

\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).

\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).

Mà \(ab+bc+ca=3abc\)(theo đề bài).

Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).

\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).

\(\Leftrightarrow K\ge\frac{3}{2}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).

Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).

15 tháng 3 2017

đề sai

15 tháng 3 2017

uk t ấn nhầm . t ghi lại đúng đây c lm hộ t vs

\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)

28 tháng 7 2016

\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)

Mà  \(\alpha=x+y+z\)  (theo gt) nên ta có thể viết  \(Q\)  như sau:

\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)

Đặt  \(a=\frac{y+z}{x};\)  \(b=\frac{x+z}{y};\)  và  \(c=\frac{x+y}{z}\)  \(\Rightarrow\)  \(a,b,c>0\)

Khi đó, biểu thức  \(Q\)  được biểu diễn theo ba biến  \(a,b,c\)  như sau:

\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)

\(\Rightarrow\)  \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)

Mặt khác, ta lại có:

\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)

nên   \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)

\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Lại có:   \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\)   (theo bđt  \(Cauchy\)  lần lượt cho hai bộ số gồm các số không âm)

Nhân hai bđt  \(\left(1\right);\)  và  \(\left(2\right)\)  vế theo vế, ta được bđt mới là:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Theo đó,  \(a+b+c+3\ge9\)  tức là  \(a+b+c\ge6\)

\(\Rightarrow\)  \(4\left(a+b+c\right)\ge24\)  \(\left(\alpha\right)\)

Bên cạnh đó, ta cũng sẽ chứng minh  \(abc\ge8\)  \(\left(\beta\right)\)

Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.

\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)

Vậy, bđt  \(\left(\beta\right)\)  được chứng minh.

Từ đó, ta có thể rút ra được một bđt mới.

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)

\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\)  \(\left(\gamma\right)\)

Cộng từng vế 3 bđt  \(\left(\alpha\right);\)  \(\left(\beta\right)\)  và  \(\left(\gamma\right)\), ta được:

\(Q-8\ge24+8+24=56\)

Do đó,  \(Q\ge64\)

Dấu   \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)  \(\Leftrightarrow\)  \(x=y=z=2\)

Vậy,  \(Q_{min}=64\)  khi  \(\alpha=6\)