K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

@Akai Haruma

14 tháng 8 2019

Áp dụng bất đẳng thức Cô-si :

\(\frac{a}{b+c}+\frac{b+c}{4a}\ge2\sqrt{\frac{a\left(b+c\right)}{4a\left(b+c\right)}}=1\)

Tương tự với các phân thức còn lại, sau đó cộng theo vế ta được :

\(VT+\frac{b+c}{4a}+\frac{c+d}{4b}+\frac{d+e}{4c}+\frac{e+a}{4d}+\frac{a+b}{4e}\ge5\)

\(\Leftrightarrow VT\ge5-\frac{1}{4}\left(\frac{b+c}{a}+\frac{c+d}{b}+\frac{d+e}{c}+\frac{e+a}{d}+\frac{a+b}{e}\right)\)

\(=5-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}+\frac{e}{c}+\frac{e}{d}+\frac{a}{d}+\frac{a}{e}+\frac{b}{e}\right)\)

\(\ge5-\frac{1}{4}\cdot10\sqrt[10]{\frac{b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e\cdot a\cdot a\cdot b}{a\cdot a\cdot b\cdot b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e}}=5-\frac{1}{4}\cdot10=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=e=1\)

28 tháng 10 2018

đặt vt=A

\(A>=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}{2\left(a+b+c+d+e\right)}\)(bdt cauchy schwarz)

=>\(\frac{2A}{5}>=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{e}+\sqrt{d}\right)^2}{5\left(a+b+c+d+e\right)}>\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)^2}=1\)(gợi ý:chỗ này dựa vào bdt bunhiacopxki)

=>\(A>=\frac{5}{2}\)

25 tháng 1 2021

????????????????????????????????????????

8 tháng 9 2018

Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)

Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)

Từ (2) suy ra xy+yz+xz=0

Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Suy ra \(x^2+y^2+z^2=1\)

21 tháng 7 2020

Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)

Cộng theo vế và a+b+c+d=1 ta có đpcm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)

\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)

21 tháng 7 2020

Bunyakovsky dạng phân thức

2 tháng 1 2017

Cách 1. Áp dụng BĐT AM-GM : 

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\)\(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)

Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)