K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Ta có: \(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(ab+bc+ca\right)\le3\left(b^2+c^2+d^2\right)\) 

Thay giả thiết vào ta có: 

\(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow4a^2-14a+10\le0\Rightarrow1\le a\le\frac{5}{2}\) 

Vậy Min a=1 khi b=c=d=2

      Max a=5/2 khi b=c=d=3/2

20 tháng 5 2016

a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố

Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)

Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố

Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số

Vậy duy nhất có p=3 thỏa mãn.

b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)

Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\) 

Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)

Giải ra được : \(1\le a\le\frac{5}{2}\)

Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1

23 tháng 4 2016

nếu p=2 loại

p=3 thỏa mãn

p>3 thì p lẻ và k chia hết cho 3

nên p2 chia 3 dư 1

2 đồng dư với -1 mod 3 vì p lẻ nên 2p đồng dư vs -1 mod 3

do đó p2+2p chia hết cho 3 mà nó lớn hơn 1 nên là hợp số

vậy p=3

2 tháng 10 2019

\(a^2+b^2+c^2+d^2=13\)

\(\Rightarrow a^2\le13\)

\(\Leftrightarrow a\le\sqrt{13}\approx3,61\) (1)

Lại có \(a+b+c+d=7\)

\(\Leftrightarrow a\le7\) (2)

Từ (1) và (2) \(\Rightarrow a_{max}=3\).

3 tháng 7 2017

http://imgur.com/O0UaOOL
Đã giải tại . 

3 tháng 7 2017

\(\left(7-d\right)^2=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=3\left(13-d^2\right)\)

=>\(4d^2-14d+10\le0\)

=>\(\left(d-1\right)\left(4d-10\right)\le0\)

=>\(1\le d\le\frac{5}{2}\).Làm tương tự đối với a,b,c

12 tháng 2 2022

Giúp mình bài này với ah.

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$a^3+a^3+1\geq 3a^2$

$b^3+b^3+1\geq 3b^2$

$c^3+c^3+1\geq 3c^2$

$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$

$\Leftrightarrow 2P+3\geq 9$

$\Leftrightarrow P\geq 3$

Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$

----------------

Tìm max:

$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$

$\Rightarrow a,b,c\leq \sqrt{3}$

Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$

$\Rightarrow a^3\leq \sqrt{3}a^2$

Tương tự với $b,c$ và cộng theo vế:

$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị. 

NV
25 tháng 3 2022

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

25 tháng 5 2021

ÁP dụng BĐT bunhia có:

 \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow-\dfrac{\left(7-x\right)^2}{3}\ge-\left(a^2+b^2+c^2\right)\)

Pt (2)\(\Leftrightarrow\)\(x^2=13-\left(a^2+b^2+c^2\right)\le13-\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow3x^2\le39-\left(7-x\right)^2\)

\(\Leftrightarrow4x^2-14x+10\le0\) \(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

=>xmin=1 \(\Leftrightarrow\)a=b=c=2

xmax=\(\dfrac{5}{2}\)\(\Leftrightarrow\) a=b=c=\(\dfrac{3}{2}\)

 

18 tháng 12 2019

Đề thi học kỳ 1 trường Ams

**Min

Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)

\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)

Khi đó:

\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)

\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)

Ta có:

\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)

Tương tự cộng lại:

\(P\ge3-\left(a^2+b^2+c^2\right)=2\)

dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.

**Max

Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)

Áp dụng:

\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)

\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)

\(=\sqrt{3\left(a+b+c\right)+3}\)

\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)

Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)

NV
27 tháng 7 2021

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)