K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

Ta có :\(a^2+b=b^2+c\Rightarrow\left(a-b\right)\left(a+b\right)=c-b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)=c-b-a+b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=c-a\)

Tương tự \(\hept{\begin{cases}\left(b-c\right)\left(b+c-1\right)=a-b\\\left(a-c\right)\left(a+c-1\right)=c-b\end{cases}}\)

Nhận vế với vế của các đẳng thức trên ta được :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=1\)

30 tháng 9 2021

Ta có:

\(\left\{{}\begin{matrix}a^2+b=b^2+c\\b^2+c=c^2+a\\a^2+b=c^2+a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b^2=c-b\\b^2-c^2=a-c\\a^2-c^2=a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(a-c\right)\left(a+c\right)=a-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{c-b}{a-b}\\b+c=\dfrac{a-c}{b-c}\\a+c=\dfrac{a-b}{a-c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-1=\dfrac{c-a}{a-b}\\b+c-1=\dfrac{a-b}{b-c}\\a+c-1=\dfrac{c-b}{a-c}\end{matrix}\right.\)

\(\Rightarrow T=\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)\)

\(=\dfrac{\left(c-a\right)\left(a-b\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

30 tháng 9 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/264403587120.html

NV
17 tháng 3 2022

\(P\ge3\sqrt[3]{\dfrac{abc\left(a^2+1\right)^2\left(b^2+1\right)^2\left(c^2+1\right)^2}{a^2b^2c^2\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}=3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}}\)

\(P\ge3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(\dfrac{a+b+c}{3}\right)^3}}=9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(a+b+c\right)^3}}\ge9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{2\left(a+b+c\right)^2}}\)

Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có ít nhất 2 số cùng phía so với \(\dfrac{4}{9}\)

Không mất tính tổng quát, giả sử đó là \(a^2;b^2\)

\(\Rightarrow\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\)

\(\Leftrightarrow a^2b^2+\dfrac{16}{81}\ge\dfrac{4}{9}a^2+\dfrac{4}{9}b^2\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\dfrac{13}{9}a^2+\dfrac{13}{9}b^2+\dfrac{65}{81}\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\left(c^2+1\right)\)

\(=\dfrac{13}{9}\left(a^2+b^2+\dfrac{4}{9}+\dfrac{1}{9}\right)\left(\dfrac{4}{9}+\dfrac{4}{9}+c^2+\dfrac{1}{9}\right)\)

\(\ge\dfrac{13}{9}\left(\dfrac{2}{3}a+\dfrac{2}{3}b+\dfrac{2}{3}c+\dfrac{1}{9}\right)^2\)

\(\Rightarrow P\ge9\sqrt[3]{\dfrac{\dfrac{13}{9}\left(\dfrac{2}{3}\left(a+b+c\right)+\dfrac{1}{9}\right)^2}{2\left(a+b+c\right)^2}}=9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9\left(a+b+c\right)}\right)^2}\)

\(P\ge9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9.2}\right)^2}=\dfrac{13}{2}\)

\(P_{min}=\dfrac{13}{2}\) khi \(a=b=c=\dfrac{2}{3}\)

17 tháng 3 2022

Thầy cho em hỏi cơ sở để ta nghĩ ra dòng

\(\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\) này là gì ạ?

Theo cá nhân em thấy cách giải này hay và dễ hiểu, và có lẽ cũng dựa vào điểm rơi nhưng hình như lời giải chưa tự nhiên lắm thì phải ạ. Thầy có cách nào nữa không thầy? Em cảm ơn ạ.

 

24 tháng 2 2022

Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha

Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)

 
24 tháng 2 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)

Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$

20 tháng 10 2020

\(a^2+b=b^2+c=c^2+a\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b-b^2-c=0\\b^2+c-c^2-a=0\\c^2+a-a^2-b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=c-b\\b^2-c^2=a-c\\c^2-a^2=b-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(c-a\right)\left(c+a\right)=b-a\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{c-b}{a-b}\\b+c=\frac{a-c}{b-c}\\c+a=\frac{b-a}{c-a}\end{cases}}\)

 \(\Rightarrow\hept{\begin{cases}a+b-1=\frac{c-a}{a-b}\\b+c-1=\frac{a-b}{b-c}\\c+a-1=\frac{b-c}{c-a}\end{cases}}\)( * )

Thay ( * ) vào T ta được : \(T=\frac{\left(c-a\right)\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

Vậy T = 1

27 tháng 5 2020

Cách 1:Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow1-3a\le0\)

Ta có:

\(P=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(=ab+bc+ca-3abc\)

\(=a\left(b+c\right)+bc\left(1-3a\right)\)

\(\le\frac{\left(a+b+c\right)^2}{4}+0=\frac{1}{4}\)

Đẳng thức xảy ra tại \(a=b=\frac{1}{2};c=0\)

Cách 2:

Ta sẽ đi chứng minh \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\le\left(a+b+c\right)^3\)

\(\Leftrightarrow\Sigma a^2b+\Sigma ab^2-12abc\le\Sigma a^3+3\Sigma a^2b+3\Sigma ab^2+6abc\)

\(\Leftrightarrow a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2-18abc\)

Theo Schur thì \(a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2+3abc\ge\Sigma a^2b+\Sigma ab^2-18abc\)

\(\Rightarrow P\ge\frac{1}{4}\) tại a=b=1/2 ; c=0 và các hoán vị

Cách 3:

\(\frac{1}{4}-P=\frac{\left(a+b+c\right)^3}{4}-\Sigma a^2b-\Sigma ab^2\)

\(=\frac{1}{4}\left(a^3+b^3+c^3-\Sigma a^2b-\Sigma ab^2+3abc\right)+\frac{3}{4}abc\ge0\) ( đúng theo Schur )

Vậy \(P\le\frac{1}{4}\)

Nhớ không nhầm thì hình như trong này có 1 cách của tth_new nhé ! 

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

31 tháng 1 2023

\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)

\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)

\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)

\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)

\(\Rightarrow A=1\)

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018

18 tháng 7 2017

ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn