K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

Ta có : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-a-b-c\)

\(\frac{ab-ac}{c}+\frac{bc-ab}{a}+\frac{ca-bc}{b}\)

\(\frac{ab\left(ab-ac\right)}{abc}+\frac{\left(bc\left(bc-ab\right)\right)}{abc}+\frac{ca\left(ca-bc\right)}{abc}\)

\(\frac{a^2b\left(b-c\right)+b^2c\left(c-a\right)+c^2a\left(a-b\right)}{abc}\)  \(\ge0\)

Do a,b,c > 0 

11 tháng 5 2018

Cách 2 . Áp dụng bất đẳng thức Cauchy , ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế theo vế => \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

=> \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Đẳng thức xảy ra <=> a = b = c 

NM
3 tháng 9 2021

ta có :

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)

\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)

\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)

Vậy ta có đpcm

3 tháng 9 2021

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)

=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)

=> a2 + b2 - 2ab - c2 = 0

=> (a - b)2 - c2 = 0

<=> (a - b + c)(a - b - c) = 0

<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)

Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)

Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)

=> đpcm 

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

20 tháng 12 2015

Áp dụng BĐT Cô-si có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2\sqrt{c^2}=2c\)

Tương tự có DPCM, tich mk nhoa, mk TL đầu tiên

22 tháng 5 2018

\(\frac{a}{a^2+ab+b^2}+\frac{b}{b^2+bc+c^2}+\frac{c}{c^2+ac+a^2}\)

\(=\frac{a^2}{a^3+a^2b+b^2a}+\frac{b^2}{b^3+b^2c+c^2b}+\frac{c^2}{c^3+c^2a+a^2c}\)

\(\ge\frac{\left(a+b+c\right)^2}{a^3+a^2b+b^2a+b^3+b^2c+c^2b+c^3+c^2a+a^2c}\)

\(=\frac{\left(a+b+c\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a+b+c}{a^2+b^2+c^2}\)

Dấu "=" xảy ra khi : \(a=b=c\)

17 tháng 11 2017

chịu??? tớ chưa học đến?

10 tháng 4 2019

Ê,

Why?

bạn ý cũng đưa câu hỏi lên thui mà 

16 tháng 3 2016

Ta có:

Từ \(\left(a+b\right)^2\ge4ab\)   (bất đẳng thức Cô-si cho hai số thực dương  \(a,b\))

nên nhân \(\frac{1}{4\left(a+b\right)}\) vào cả hai vế của bđt trên, ta được:

 \(\frac{a+b}{4}\ge\frac{ab}{a+b}\)  \(\left(1\right)\)

Tương tự, ta cũng có  \(\frac{b+c}{4}\ge\frac{bc}{b+c}\)  \(\left(2\right)\)  và  \(\frac{c+a}{4}\ge\frac{ca}{c+a}\)  \(\left(3\right)\)

Cộng từng vế của bđt \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)

\(\Leftrightarrow\)  \(\frac{2\left(a+b+c\right)}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)

\(\Leftrightarrow\)  \(\frac{a+b+c}{2}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\), tức \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)  \(\left(đpcm\right)\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)

23 tháng 11 2019

a) Đơn giản, tự chứng minh

b) Cách 1: Áp dụng BĐT câu a: \(VT\ge\left(a^2+ab-b^2\right)+\left(b^2+bc-c^2\right)+\left(c^2+ca-a^2\right)=ab+bc+ca=VP\)(đpcm)

Cách 2:

Ta chứng minh BĐT chặt hơn: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (vì \(a^2+b^2+c^2\ge ab+bc+ca\))

Giả sử \(b=min\left\{a,b,c\right\}\).Bằng phương pháp B-W (Buffalo way) ta phân tích được:

\(VT-VP=\frac{\left(4a^2c+4abc-b^3+3b^2c-bc^2\right)\left(a-b\right)^2+b\left(b^2+bc+c^2\right)\left(a+b-2c\right)^2}{4abc}\ge0\)

P/s: Cách 2 tuy dài nhưng rất hay vì đây là phân tích bằng tay (không cần dùng phần mềm)!