K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

đặt VT =A đi .thì sử dụng BĐT bunhiacopxki ta có: 
A[a(b+c)+b(c+d)+c(d+a)+d(a+b)] 
>=(a+b+c+d)^2 
giờ ta chỉ cần chứng minh: 
(a+b+c+d)^2>=2a(b+c)+b(c+d)+c(d+a)+d(a... 
điều này <=> với:a^2+b^2+c^2+d^2>=2ac+2bd. 
diều này là hiển nhiên theo BĐT cô-si=>đpcm.MinA=2.

26 tháng 11 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)=\left(x,y,z\right)\)

Khi đó :
\(Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)

Ta có :

\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b\left(c-a\right)-\left(c-a\right)\left(c+a\right)}{ca}\)

\(=\frac{b\left(c-a\right)-\left(c-a\right)\left(-b\right)}{ac}=\frac{2b\left(c-a\right)}{ca}\) ( do \(a+b+c=0\))

\(\Rightarrow\frac{x+y}{z}=\frac{2b\left(c-a\right)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)

Hoàn toàn tương tự 

\(\frac{y+z}{x}=\frac{2c^3}{abc};\frac{x+z}{y}=\frac{2a^3}{abc}\)

Do đó :

\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3\)

\(=3+\frac{2\left[\left(-c\right)^3-3ab\left(-c\right)^3+c^3\right]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

Ta có đpcm

8 tháng 11 2017

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}-\frac{b^2}{b+a}-\frac{c^2}{b+c}-\frac{a^2}{c+a}\)

\(=\left(\frac{a^2}{a+b}-\frac{b^2}{b+a}\right)+\left(\frac{b^2}{b+c}-\frac{c^2}{b+c}\right)+\left(\frac{c^2}{c+a}-\frac{a^2}{c+a}\right)\)

\(=a-b+b-c+c-a=0\)

Từ đây ta suy ra được

\(\hept{\begin{cases}\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\le\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\\\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\end{cases}}\)

Dấu = xảy ra khi \(|a|=|b|=|c|\)

8 tháng 11 2017

Cảm ơn bạn đã trả lời câu hỏi giúp mình

18 tháng 7 2016

Ta có ; \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}=\frac{1}{b-c}+\frac{1}{a-b}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)

Cộng các vế lại với nhau được điều phải chứng minh.

18 tháng 7 2016

A , B , C khác nhau thì bạn làm sao có thể cho : A-C = B đc ?
 

30 tháng 8 2017

Ta có: 

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=-\left(\frac{b-c}{\left(a-b\right)\left(c-a\right)}+\frac{c-a}{\left(b-c\right)\left(a-b\right)}+\frac{a-b}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=2.\frac{-a^2-b^2-c^2+ab+bc+ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=2.\frac{\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow\left(a+c\right)\left(b+c\right)=c^2\)

Vì \(a,b>0\)mà \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\)nên \(c< 0\Rightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

\(\Rightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\Rightarrow\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)

\(\Rightarrow\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=a+b\)---> 2 vế đều dương nên ta lấy căn 2 vế:

\(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)

4 tháng 7 2016

Đặt M; N; P như sau:

\(M=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge N=\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge P=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}.\)

1./ Xét hiệu: M - P

\(M-P=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=a-b+b-c+c-a=0\)

=> M = P

2./ Bất đẳng thức \(M\ge N\ge P\)có \(M=P\)=> \(M=N=P\)

3./ Khi M = N, ta có hiệu: M - N = 0 nên:

\(\frac{a^2-c^2}{a+b}+\frac{b^2-a^2}{b+c}+\frac{c^2-b^2}{c+a}=0\)

\(\Leftrightarrow\frac{\left(a^2-c^2\right)\left(b+c\right)\left(c+a\right)+\left(b^2-a^2\right)\left(a+b\right)\left(a+c\right)+\left(c^2-b^2\right)\left(a+b\right)\left(c+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2\)(1)

Mặt khác ta luon có bất đẳng thức: \(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)dấu "=" khi a2 = b2 = c2

Do đó để xảy ra đẳng thức (1) thì a2 = b2 = c2 hay |a| = |b| = |c|. ĐPCM

4 tháng 7 2016

Làm thì mình nghĩ mình làm dc nhưng có cái giờ phải đi học rồi . Nếu tối nay chưa ai trả lời mình sẽ trả lời 

30 tháng 9 2020

k có số dương nào để tổng trên bằng 0

11 tháng 12 2020

a) Vì \(\frac{a}{b}>1\Rightarrow a>b\Rightarrow a-b>0\)

Xét hiệu : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+ac-ba-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)

Mà a-b>0 (cmt) suy ra :\(\frac{a}{b}-\frac{a+c}{b+c}>0\Leftrightarrow\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)

b) Chứng minh tương tự

11 tháng 12 2020

2/Cho b,d>0

Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

24 tháng 11 2019

Bạn ơi mình nói ngắn gọn thôi 

Quy đồng hai vế với (a+1)(b+1(c+1) phá ngoặc đơn là tìm được đáp án