K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2021

Xét pt hoành độ gđ của (d) và (P) có:

\(x^2=2x+4m^2-8m+3\)

\(\Leftrightarrow x^2-2x-4m^2+8m-3=0\) (1)

\(\Delta=4-4\left(-4m^2+8m-3\right)\)\(=16m^2-32m+16=16\left(m-1\right)^2\)

Để (P) và (d) cắt nhau tại hai điểm pb khi pt (1) có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m\ne1\)

Có \(A\in\left(P\right)\Rightarrow y_1=x_1^2\)

\(B\in\left(P\right)\Rightarrow y_2=x_2^2\) , trong đó x1; x2 là hai nghiệm của pt (1)

Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-4m^2+8m-3\end{matrix}\right.\)

\(y_1+y_2=10\)

\(\Leftrightarrow x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4-2\left(-4m^2+8m-3\right)=10\)

\(\Leftrightarrow8m^2-16m=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)(tm)

Vậy...

 

13 tháng 12 2017

Đáp án C

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

13 tháng 1 2022

Còn phần b nữa bạn ơi

29 tháng 3 2017

Đáp án D

27 tháng 12 2018

Phương trình hoành độ giao điểm của (P) và d:  x 2 − m x + 2 = 0 (1)

P) cắt d tại hai điểm phân biệt A(x1;y1) và B(x2;y2) (1) có hai nghiệm phân biệt

∆ = m2 – 4.2 > 0 m2 > 8 m > 2 2  hoặc m<- 2 2

Khi đó x1, x2 là nghiệm của (1). Áp dụng định lí Vi–ét ta có x1 + x2 = m; x1x2 = 2.

Do A, B d nên y1 = mx1 – 2 và y2 = mx2 – 2.

Ta có:

  y 1 + y 2 = 2 ( x 1 + x 1 ) − 1 < = > m x 1 − 2 + m x 2 − 2 = 2 ( x 1 + x 2 ) − 1 < = > ( m − 2 ) ( x 1 + x 2 ) − 3 = 0 < = > m ( m − 2 ) − 3 = 0 < = > m 2 − 2 m − 3 = 0

m = –1 (loại) hoặc m = 3 (thỏa mãn)

 

Vậy m = 3 là giá trị cần tìm.

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

13 tháng 6 2021

a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\) 

Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)

\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)

b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)

Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)

\(\Rightarrow x_1-x_2=4>0\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)

\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)

\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)

 

 

 

PTHĐGĐ là;

x^2-3x-m^2+1=0

Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0

=>Phương trình luôn có hai nghiệm phân biệt

TH1: x1>0; x2>0

=>x1+2x2=3

mà x1+x2=3

nên x1=1; x2=1

x1*x2=-m^2+1

=>-m^2+1=1

=>m=0

TH2: x1<0; x2>0

=>-x1+2x2=3 và x1+x2=3

=>x1=1; x2=2

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2-1=0(loại)

TH2: x1>0; x2<0

=>x1-2x2=0 va x1+x2=3

=>x1=2 và x2=1

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2=1(loại)

TH3: x1<0; x2<0

=>-x1-2x2=3 và x1+x2=3

=>x1=9 và x2=-6

x1*x2=-m^2+1

=>-m^2+1=-54

=>-m^2=-55

=>\(m=\pm\sqrt{55}\)

1 tháng 5 2023

|x1|+2 |x2| = 3 : .

làm sao chứng minh đc  
4 tháng 5 2021

m = +- 5

 

 

8 tháng 5 2021

ghi hộ cách lm dc ko?