K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kêu lớp 8 mà đăng lớp 9 hả trời:)

18 tháng 1 2022

học trước r

3 tháng 3 2022

ảnh nhỏ quá

3 tháng 3 2022

undefined

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$x^3-9y^2+9x-6y=1$

$\Leftrightarrow x^3+9x=9y^2+6y+1$

$\Leftrightarrow x(x^2+9)=(3y+1)^2$

Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$

$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$

Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau. 

$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.

 

7 tháng 4 2021

giúp em lun tìm x,y em cảm ơn nhiều

 

 

a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)

\(=14\sqrt{2x}+30\)

b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)

\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)

\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)

26 tháng 9 2021

\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\left(1\right)\\x^2+y^2-x+y=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)

PT (1)\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x^2+y^2\right)-9\left(x-y\right)=-22\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x-y\right)^2-6xy-9\left(x-y\right)=-22\)

PT (2)\(\Leftrightarrow\left(x-y\right)^2-\left(x-y\right)+2xy=\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}a=x-y\\b=xy\end{matrix}\right.\)

Hệ tt \(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\a^2-a+2b=\dfrac{1}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\b=\dfrac{1-2a^2+2a}{4}\end{matrix}\right.\)

\(\Rightarrow a^3+3a\left(\dfrac{1-2a^2+2a}{4}\right)-3a^2-6\left(\dfrac{1-2a^2+2a}{4}\right)-9a=-22\)

\(\Leftrightarrow-2a^3+6a^2-45a+82=0\)

\(\Leftrightarrow a=2\)\(\Rightarrow b=-\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy...

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)

Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)

\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)

Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)

Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)

\(\le1+\frac{2017}{3}=\frac{2020}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

26 tháng 5 2018

Ta có:\(\left(9x^3+3y^2+z\right)\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\dfrac{x}{9x^3+3y^2+z}\le\dfrac{x\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{x}{3}+xz}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng theo vế:

\(Σ_{cyc}\dfrac{x}{9x^3+3y^2+z}\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+xy+yz+xz}{\left(x+y+z\right)^2}\)

\(\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+\dfrac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)

Lại có: \(2017\left(xy+yz+xz\right)\le2017\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2017}{3}\)

\(\Rightarrow A\le\dfrac{2020}{3}\)

Dấu "=" khi \(x=y=z=\dfrac{1}{3}\)

Vậy ko ra yếu zzzz

26 tháng 5 2018

c-s dưới mẫu xem