K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Đặt \(A=\frac{3-4a}{1+a^2}\)

Gọi k là một giá trị của A

=> \(A=\frac{3-4a}{a^2+1}=k\)

=> ka2 + k = 3 - 4a

<=> a2k + 4a + k - 3 = 0

<=> a2k2 + 4ak + k2 - 3k = 0 (cùng nhân cả 2 vế với k)

<=> (a2k2 + 4ak + 4) + (k2 - 3k - 4) = 0

Vì a2k2 + 4ak + 4 = (ak + 2)2 \(\ge\) 0 với mọi a, k

=> k2 - 3k - 4 \(\le\) 0

\(\Leftrightarrow\left(k+1\right)\left(k-4\right)\le0\)

\(\Leftrightarrow-1\le k\le4\)

Vậy GTNN của A là -1. Bài đầu trong ngày, hy vọng không sai ^_^

16 tháng 1 2017

\(A=2x^2+9y^2-6xy-6x-12y+2036\)

   \(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)

 \(\Rightarrow A\ge2007\)

Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)

2 tháng 8 2016

Ta có: \(\left(a+b\right)^2=a^2+2ab+b^2=1\)

Mặt khác: \(\left(a^2-2ab+b^2\right)\ge0\)

Cộng 2 vế của 2 phương trình trên ta có:

\(2a^2+2b^2\ge1\Rightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Dấu bằng xảy ra khi và chỉ khi a=b=1/2

2 tháng 8 2016

câu 2 dùng bđt \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

15 tháng 11 2021

\(S=a+\dfrac{1}{a}=\dfrac{a}{9}+\dfrac{8a}{9}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{9}\cdot\dfrac{1}{a}}+\dfrac{8a}{9}=2\cdot\dfrac{1}{3}+\dfrac{8a}{9}\ge\dfrac{2}{3}+\dfrac{8\cdot3}{9}=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\\ S_{min}=\dfrac{10}{3}\Leftrightarrow a^2=9\Leftrightarrow a=3\)

15 tháng 11 2021

nhớ ghi áp dụng BĐT CooSSi nha

2 tháng 10 2016

a)A=x(x+1)(x+2)(x+3)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

Đặt \(t=x^2+3x\) ta đc:

\(t\left(t+2\right)\)\(=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)

Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Với a,b,c dương ta áp dụng Bđt Cô si 3 số:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu = khi a=b=c

Vậy MinB=9 khi a=b=c

c)\(C=a^2+b^2+c^2\)

Áp dụng Bđt Bunhiacopski 3 cặp số ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

\(\Rightarrow C\ge\frac{3}{4}\)

Dấu = khi \(a=b=c=\frac{1}{2}\)

Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)

12 tháng 10 2021

\(A=\dfrac{a+1}{a}\) hay \(A=a+\dfrac{1}{a}\)?

12 tháng 10 2021

 

A=a+1a

21 tháng 10 2021

(x+√x+1/4)+3/4

(√x+1/2)2+3/4

ta có (√x+1/2)2>=0

(√x+1/2)2+3/4>=3/4

minA=3/4 và xảy ra khi √x+1/2=0=>√x=-1/2=>x=1/4