K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)

\(\left(x-1+x-3\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2\right]+\left[2\left(2-x\right)\right]^3=0\)

\(\left(2x-4\right)\left(x^2-2x+1-x^2+4x-3+x^2-4x+4\right)+\left(4-2x\right)^3=0\)

\(\left(2x-4\right)\left(x^2-4x+7\right)-\left(2x-4\right)^3=0\)

\(\left(2x-4\right)\left[x^2-4x+7-\left(2x-4\right)^2\right]=0\)

\(2\left(x-2\right)\left(x^2-4x+7-4x^2+16x-16\right)=0\)

\(2\left(x-2\right)\left(12x-3x^2-9\right)=0\)

\(6\left(x-2\right)\left(4x-x^2-3\right)=0\)

\(6\left(x-2\right)\left(3x-x^2+x-3\right)=0\)

\(6\left(x-2\right)\left[x\left(3-x\right)-\left(3-x\right)\right]=0\)

\(6\left(x-2\right)\left(3-x\right)\left(x-1\right)=0\)

\(\Rightarrow x=\left\{1;2;3\right\}\)

6 tháng 7 2019

\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)

\(\Rightarrow x^3-2x^2+x-x^2+2x+1+x^3-6x^2+9x-3x^2+18x-27+64-64x+16x^2-32x+32x^2-8x^3=0\)

\(\Rightarrow-6x^3+36x^2-66x+36=0\)

\(\Rightarrow-6\left(x^3-6x^2+11x-6\right)=0\)

\(\Rightarrow\left(x^2-5x+6\right)\left(x-1\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)

=> x - 3 = 0 ; x - 2 = 0 hoặc x - 1 = 0

=> x = 3 ; x = 2 hoặc x = 1

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

25 tháng 9 2019

x+xy+y+1=9

(x+1)(y+1)=9

áp dụng bđt ab<=(a+b)^2/4

->9<=(x+y+2)^2/4 -> x+y >=4

....

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:
1. 

$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$

$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$

2.

$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$

$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$

$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$

3.

$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$

$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$

$=6x-12=6.1-12=-6$

4.

$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$

$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$

$=4x-5=4(-1)-5=-9$

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)