Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)

a^2 + b^2 + c^2 + d^2 = e^2
a^2 + b^2 + c^2 + e^2 = d^2
a^2 + b^2 + d^2 + e^2 = c^2
a^2 + d^2 + e^2 + c^2 = b^2
d^2 + e^2 + c^2 + b^2 = a^2
=> 4( a^2 + b^2 + c^2 + d^2 + e^2 ) = a^2 + b^2 + c^2 + d^2 + e^2
=> 3( a^2 + b^2 + c^2 + d^2 + e^2 ) = 0
=> a^2 + b^2 + c^2 + d^2 + e^2 = 0
=> a = b = c = d = e = 0
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.

Câu 1 : Số đó là 666
Câu 2 : Tổng của 5 STN chẵn có tận cùng là 0
Câu 3 : STN ab = 50
Câu 4 : Tập hợp đó là {5; 11; 55}
Câu 5 : ???
Câu 6 : Số đó là 9731
Câu 7 : IM = 2cm
Câu 8 : OE = 7 cm
Câu 9 : ??? Sai đề
Câu 10 : Trong hộp có 1 viên bi đỏ
Câu a:
Giải:
A = \(\frac{3}{n-3}\)(n ≠ 3)
A ∈ Z ⇔ 3 ⋮ (n -3)
(n - 3) ∈ Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
n - 3
-3
-1
1
3
n
0
2
4
6
Theo bảng trên ta có n ∈{0; 2; 4; 6}
Vậy n ∈ {0; 2; 4; 6}
Câu b:
B = \(\frac{-5}{2n-1}\)
B nguyên khi và chỉ khi 5 ⋮(2n - 1)
(2n -1) ∈ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
2n-1
-5
-1
1
5
n
-2
0
1
3
Theo bảng trên ta có: n ∈ {-2; 0; 1; 3}
Vậy n ∈ {-2; 0; 1; 3}