K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

?

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

7 tháng 10 2017

ta có:

\(A^2=\left(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\right)^2\le\left(a+b+c\right)\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\) (BĐT Bu-nhi-a)

=>\(A^2\le\sqrt{3}\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\)      (*)

mặt khác ta có: \(a^2+1\ge2a\) (BĐT cauchy ) =>\(\frac{a}{a^2+1}\le\frac{1}{2}\)

tương tự ta có: \(\frac{b}{b^2+1}\le\frac{1}{2}\)    ;    \(\frac{c}{c^2+1}\le\frac{1}{2}\)

=> \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)     (**)  

từ (*),(**) => \(A^2\le\sqrt{3}.\frac{3}{2}=\frac{3\sqrt{3}}{2}\)

=>\(A\le\sqrt{\frac{3\sqrt{3}}{2}}\)

=> GTLN của A là \(\sqrt{\frac{3\sqrt{3}}{2}}\)   <=> a=b=c<\(\frac{\sqrt{3}}{3}\)

8 tháng 10 2017

Ta có:

\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}}\)

\(\le\frac{\sqrt[8]{27}a}{\sqrt{4\sqrt[4]{a^2}}}=\frac{\sqrt[8]{27a^6}}{2}\)

\(=\frac{\sqrt{3}}{2}.\sqrt[8]{a^6.\frac{1}{3}}\)

\(\le\frac{\sqrt{3}}{2}.\frac{6a+\frac{2}{\sqrt{3}}}{8}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{\sqrt{b^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6b+\frac{2}{\sqrt{3}}}{8}\left(2\right)\\\frac{c}{\sqrt{c^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6c+\frac{2}{\sqrt{3}}}{8}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) 

\(\Rightarrow A\le\frac{\sqrt{3}}{2}.\left(\frac{6}{8\sqrt{3}}+\frac{6}{8}\left(a+b+c\right)\right)\)

\(\le\frac{\sqrt{3}}{2}.\left(\frac{3}{4\sqrt{3}}+\frac{3\sqrt{3}}{4}\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)        

22 tháng 3 2020

Ta có: \(4b\sqrt{c}-c\sqrt{a}=\sqrt{c}\left(4b-\sqrt{ac}\right)>0\)( do \(1< a,b,c< 2\))

Tương tự => Các MS dương

\(VT=\frac{ba}{4b\sqrt{ac}-ca}+\frac{cb}{4c\sqrt{ba}-ab}+\frac{ac}{4a\sqrt{bc}-bc}\)

Áp dụng BĐT cosi schawr ta có

\(VT\ge\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{4b\sqrt{ac}+4c\sqrt{ab}+4a\sqrt{bc}-ab-bc-ac}\)

Áp dụng cosi ta có \(2b\sqrt{ac}=2\sqrt{ab}.\sqrt{ac}\le ab+ac\);\(2c\sqrt{ab}\le ac+bc\);\(2a\sqrt{bc}\le ab+ac\)

=> \(VT\ge\frac{\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2}{ab+bc+ac+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}}=\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

7 tháng 8 2019
https://i.imgur.com/3xuKEN9.jpg
7 tháng 8 2019
https://i.imgur.com/JCFXX2s.jpg
2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

10 tháng 4 2020

\(\Leftrightarrow C=\frac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}:\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\)

\(\Leftrightarrow C=\frac{2\sqrt{a}+2\sqrt{a}+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}.\frac{\left(2-\sqrt{a}\right).\sqrt{a}}{\sqrt{a}-3}=\frac{\left(4\sqrt{a}+4a\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)}\)

b) Để C>0 thì \(\frac{4\left(a-\sqrt{a}\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\sqrt{a}+3}>0hay\left(a-\sqrt{a}\right)>0=>a>1\)

c) bổ sung ý c) tìm a để C=-1

để B=-1

\(\Leftrightarrow\left(4\sqrt{a}+4a\right)\sqrt{a}=-\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)\)

\(\Leftrightarrow4a+4a\sqrt{a}=-a+3\sqrt{a}-2\sqrt{a}+6\)

\(\Leftrightarrow5a+4a\sqrt{a}-\sqrt{a}-6=0=>\orbr{\begin{cases}\sqrt{a}=1\\5\sqrt{a}+4a-1=0\left(zô\right)lý\end{cases}=>a=1}\)