K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

\(E=\)( ghi đề vào đây )

\(E=\sqrt[3]{4+\frac{5}{3}.\frac{\sqrt{31}}{\sqrt{3}}}+\sqrt[3]{4-\frac{5}{3}.\frac{\sqrt{31}}{3}}\)

\(E=\sqrt[3]{4+\frac{5\sqrt{31}}{3\sqrt{3}}}+\sqrt[3]{4+\frac{5.\sqrt{31}}{3\sqrt{3}}}\)

\(E\approx1\)

NV
24 tháng 6 2019

\(E^3=4+\frac{5}{3}\sqrt{\frac{31}{3}}+4-\frac{5}{3}\sqrt{\frac{31}{3}}+3\sqrt[3]{\left(16-\frac{25}{9}.\frac{31}{3}\right)}\left(\sqrt[3]{4+\frac{5}{3}\sqrt{\frac{31}{3}}}+\sqrt[3]{4-\frac{5}{3}\sqrt{\frac{31}{3}}}\right)\)

\(\Leftrightarrow E^3=8-7E\)

\(\Leftrightarrow E^3+7E-8=0\)

\(\Leftrightarrow\left(E-1\right)\left(E^2+E+8\right)=0\)

\(\Leftrightarrow E=1\)

5 tháng 8 2019

a) \(B=\left(\sqrt{x}-\frac{9}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}}-\frac{9\sqrt{x}+9}{x+3\sqrt{x}}\right)\)

\(B=\frac{x-9}{\sqrt{x}}:\left(\frac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{9\sqrt{x}+9}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}}\cdot\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+6\sqrt{x}+9-9\sqrt{x}-9}\)

\(B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)^2}{x-3\sqrt{x}}\)

\(B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)^2}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(B=\frac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}}\)

b) \(2B=\sqrt{x}+31\)

\(\Leftrightarrow\frac{2\left(\sqrt{x}+3\right)^2}{\sqrt{x}}=\sqrt{x}+31\)

\(\Leftrightarrow2\left(x+6\sqrt{x}+9\right)=\sqrt{x}\left(\sqrt{x}+31\right)\)

\(\Leftrightarrow2x+12\sqrt{x}+18=x+31\sqrt{x}\)

\(\Leftrightarrow x-19\sqrt{x}+18=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-18\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-18=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=324\end{matrix}\right.\)( thỏa )

Vậy....

c) \(M=B-\frac{5}{\sqrt{x}}\)

\(M=\frac{\left(\sqrt{x}+3\right)^2-5}{\sqrt{x}}\)

\(M=\frac{x+6\sqrt{x}+9-5}{\sqrt{x}}\)

\(M=\frac{x+6\sqrt{x}+4}{\sqrt{x}}\)

\(M=\sqrt{x}+6+\frac{4}{\sqrt{x}}\)

Đặt \(\frac{1}{\sqrt{x}}=a\)

Áp dụng bất đẳng thức Cô-si :

\(M=\frac{1}{a}+6+4a\ge2\sqrt{\frac{4a}{a}}+6=10\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{a}=4a\Leftrightarrow a=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{1}{2}\Leftrightarrow x=4\)( thỏa )

Vậy....

5 tháng 8 2019
https://i.imgur.com/p5KHAHO.jpg
30 tháng 6 2017

Đặt \(x=\sqrt{\frac{b}{a}};y=\sqrt{\frac{c}{b}};z=\sqrt{\frac{a}{c}}\) thì \(xyz=1\) và BĐT cần chứng minh là 

\(\sqrt{\frac{2}{x^2+1}}+\sqrt{\frac{2}{y^2+1}}+\sqrt{\frac{2}{z^2+1}}\le3\)

Giả sử \(x\le y\le z\Rightarrow\hept{\begin{cases}xy\le1\\z\ge1\end{cases}}\) ta có:

\(\left(\sqrt{\frac{2}{x^2+1}}+\sqrt{\frac{2}{y^2+1}}\right)^2\le2\left(\frac{2}{x^2+1}+\frac{2}{y^2+1}\right)\)

\(=4\left[1+\frac{1-x^2y^2}{\left(x^2+1\right)\left(y^2+1\right)}\right]\)

\(\le4\left[1+\frac{1-x^2y^2}{\left(xy+1\right)^2}\right]=\frac{8}{xy+1}=\frac{8z}{z+1}\)

\(\Rightarrow\sqrt{\frac{2}{x^2+1}}+\sqrt{\frac{2}{y^2+1}}\le2\sqrt{\frac{2z}{z+1}}\)

Nên còn phải chứng minh \(2\sqrt{\frac{2z}{z+1}}+\frac{2}{z+1}\le3\)

\(\Leftrightarrow1+3z-2\sqrt{2z\left(z+1\right)}\ge0\Leftrightarrow\left(\sqrt{2z}-\sqrt{z+1}\right)^2\ge0\)

BĐT cuối đúng hay ta có ĐPCM

20 tháng 2 2020

Theo e nghĩ là đề phải như này cơ ạ :

\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)

Biến đổi và sử dụng Cô - si là sẽ ra :

Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)

\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

20 tháng 2 2020

Đề không sai đâu:P

\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)

\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)