K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5

10 tháng 5 2020

Ta có : \(\frac{a}{1+9b^2}=\frac{a+9ab^2-9ab^2}{1+9b^2}=a-\frac{9ab^2}{1+9b^2}\ge a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)

Tương tự : \(\frac{b}{1+9c^2}\ge b-\frac{3bc}{2}\)\(\frac{c}{1+9a^2}\ge c-\frac{3ac}{2}\)

\(\Rightarrow Q\ge a+b+c-\frac{3ab+3bc+3ac}{2}\ge a+b+c-\frac{3.\frac{\left(a+b+c\right)^2}{3}}{2}=1-\frac{1}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 5 2020

Ta có: \(Q=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{9a^2}=\frac{a+9ab^2-9ab^2}{1+9b^2}+\frac{b+9bc^2-9bc^2}{1+9b^2}+\frac{c+9ca^2-9ca^2}{1+9c^2}\)

\(=1-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}=1-\left(\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ca^2}{1+9a^2}\right)\)

Áp dụng BĐT AM-GM ta có:

\(\frac{9ab^2}{1+9b^2}\le\frac{9ab^2}{2\sqrt{1\cdot9b^2}}=\frac{9ab^2}{2\cdot3b}=\frac{3ab}{2}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{9bc^2}{1+9c^2}\le\frac{3ab}{2}\\\frac{9ca^2}{1+9a^2}\le\frac{3ab}{2}\end{cases}}\)

\(\Rightarrow\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ac^2}{1+9a^2}\le\frac{3\left(ab+bc+ca\right)}{2}\le\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)

Hay \(Q=1-\left(\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ca^2}{1+9a^2}\right)\ge1-\frac{1}{2}=\frac{1}{2}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

Vậy \(Min_P=\frac{1}{2}\)đạt được khi \(a=b=c=\frac{1}{3}\)

25 tháng 9 2019

trả lời lẹ cho tui cấy

24 tháng 4 2019

=(\(\frac{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}{\left(\sqrt{a+b}+\sqrt{a-b}\right)\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)+\(\frac{a-b}{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)

=(\(\frac{\sqrt{a^2-b^2}-\left(a-b\right)}{a+b-a+b}+\frac{\sqrt{a^2-b^2}+a-b}{a+b-a+b}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)

=\(\frac{2\sqrt{a^2-b^2}}{2b}\):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)

=\(\frac{\sqrt{a^2-b^2}}{b}\)*\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)

=\(\frac{a^2+b^2}{b}\)

25 tháng 4 2019

b/ Thế \(b=a-1\)thì ta có

\(P=\frac{a^2+\left(a-1\right)^2}{a-1}=\frac{2a^2-2a+1}{a-1}\)

\(\Leftrightarrow2a^2-\left(2+P\right)a+1+P=0\)

\(\Rightarrow\Delta_a=\left(2+P\right)^2-4.2.\left(1+P\right)\ge0\)

\(\Leftrightarrow P\ge2+2\sqrt{2}\)

1 tháng 2 2018

1)

\(2x^2-2xy+5y^2-2x-2y+1=0.\)

\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)

1 tháng 5 2019

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 5 2019

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

27 tháng 1 2019

Do a,b,c có vai trò hoán vị vòng quang.Ta dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Ta có: \(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{9abc}\right)+\frac{8}{9abc}\)

\(\ge\frac{4}{a^2+b^2+c^2+9abc}+\frac{8}{9abc}=\frac{4}{a^2+b^2+c^2+9abc}+\frac{4}{9abc}+\frac{4}{9abc}\)

\(\ge\frac{\left(2+2+2\right)^2}{a^2+b^2+c^2+27abc}=\frac{36}{a^2+b^2+c^2+27abc}\) (Cauchy-Schwarz dạng Engel)

\(\ge\frac{36}{a^2+b^2+c^2+\left(a+b+c\right)^3}=\frac{36}{a^2+b^2+c^2+1}+\frac{a^2+b^2+c^2+1}{36}-\frac{a^2+b^2+c^2+1}{36}\)(Cô si kết hợp giả thiết a + b + c = 1)

\(\ge2-\frac{a^2+b^2+c^2+1}{36}\)

Tới đây bí:v