K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$

22 tháng 9 2019

Áp dụng bất đẳng thức Cosi ta có:

1 32 32 x 29 x + 3 y  ≤  1 4 2 32 x + 29 x + 3 y 2 = 1 8 2 61 x + 3 y

Tương tự

1 32 32 y 29 y + 3 x  ≤  1 8 2 61 y + 3 x

=> P ≤  4 2 x + y  ≤  4 2 x 2 + 1 2 + y 2 + 1 2 = 8 2

Vậy P min =  8 2 <=> x = y = 1

6 tháng 10 2017

ta có (x+y)2\(\le\)2(x2+y2)=2

=> x+y \(\le\)\(\sqrt{2}\)(vì x+y\(\ge\)0)

Dấu bằng xảy ra khi x=y=\(\frac{\sqrt{2}}{2}\)

3 tháng 9 2018

Bất đẳng thức Cô-si có  \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\):

\(x^2+y^2\ge2xy\Rightarrow2\ge x^2+y^2+2xy\Rightarrow x+y\le\sqrt{2}\)

Vậy : \(GTLN=\sqrt{2}\)

20 tháng 5 2021

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

13 tháng 10 2021

sai chiều bđt r

 

1 tháng 9 2021

Chắc dùng Mincowski

AH
Akai Haruma
Giáo viên
25 tháng 1 2021

Lời giải:Vì $x^2+y^2+z^2=2$ nên:

$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$

$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$

$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$

(theo BĐT AM-GM)

$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$

Vậy $P_{\max}=3$

Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$

 

<=>4(x+y)=5

ta có:

\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)

\(\Rightarrow S\ge5\)

Vậy Min S=5 khi x=1;y=1/4