K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

C1 : Áp dụng BĐT Cô - si cho 3 số không âm ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : Sử dụng biến đổi tương đương :

Ta có :\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) ( luôn đúng )

Do đó có : \(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 2 2020

Xét hiệu \(a^3+b^3+c^3-3abc\) ta có:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)

Vì \(a,b,c\ge0\)\(\Rightarrow a+b+c\ge0\)

mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)

hay \(a^3+b^3+c^3-3abc\ge0\)\(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b=c=0\\a=b=c\end{cases}}\)\(\Leftrightarrow a=b=c\ge0\)

CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0

+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:

a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)

Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc

=>a3+b3+c3\(\ge\)3abc

Bất đẳng thức xảy ra khi a=b=c(ĐPCM)

Chúc bn học tốt

6 tháng 2 2020

C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\) 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)

Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

12 tháng 2 2017

a3+b3+c3 - 3abc >= 0 

<=>(a+b+c)(a2+b2+c2-ab-bc-ca) >= 0 

bn tự c/m ngoặc thứ 2 >= 0 (nhân 2 vào),có a+b+c >= 0 ->đpcm

9 tháng 7 2018

Áp dụng bđt cô si dạng engel cho 3 số dương:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Vậy đẳng thức chỉ xảy ra khi a = b = c

Chúc bạn học tốt!

9 tháng 7 2018

Câu hỏi của Pé Ken - Toán lớp 8 - Học toán với OnlineMath tham khảo

4 tháng 3 2017

\(giải:\)

\(a^3\)\(+b^3\)\(+c^3\)\(\ge3abc\)

\(\Rightarrow a^3\)\(+b^3\)\(+c^3\)\(-3abc\ge0\)

\(\Rightarrow a^3\)\(+b^3\)\(+c^3\)\(-3abc+3a^2b+3ab^2-3a^2b-3ab^2\ge0\)

\(\Rightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3abc+3a^2b+3ab^2\right)\ge0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(c+a+b\right)\ge0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\ge0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\ge0\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)(luôn đúng \(\forall\)a,b,c\(\ge0\))

hay \(a^3+b^3+c^3\ge3abc\left(đpcm\right)\)

7 tháng 4 2017

\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow a=b=c\)

9 tháng 6 2017

đăng 2 lần ở 2 web làm gì rồi COPIER lại đào lên nhai lại

14 tháng 7 2017

a)Áp dụng BĐT AM-GM ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

Xảy ra khi \(a=b\)

b)Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Xảy ra khi \(a=b=c\)

c)Áp dụng BĐT AM-GM ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Xảy ra khi \(a=b=c\)

22 tháng 2 2018

==" s t nhớ là bất đẳng thức cosi dùng cho số dương nhỉ ?

\(\left(a-b\right)^2\ge0\)

<=>\(a^2-2ab+b^2\ge0\)

<=>\(a^2+b^2\ge2ab\)

b) Ta có\(\left(a-b\right)^2\ge0\)(1)

\(\left(b-c\right)^2\ge0\)(2)

\(\left(a-c\right)^2\ge0\)(3)

Cộng vế với vế ba đẳng thức (1),(2),(3) ta đc

\(a^2+b^2-2ab+b^2+c^2-2bc+a^2+c^2-2ac\ge0\)

<=>\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

<=>\(a^2+b^2+c^2\ge ab+bc+ac\)

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không?...
Đọc tiếp

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).

Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)

Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:)) 

Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)

Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:

\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)

---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------

 

0
AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

a)

Áp dụng bất đẳng thức AM-GM:

\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)

\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)

\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)

Dấu bằng xảy ra khi \(x=1\)

b)

Áp dụng BĐT AM-GM:

\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)

\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)

Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)

Dấu bằng xảy ra khi

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)

\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)

Do đó dấu bằng không xảy ra

Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)