K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)

b)\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

1 tháng 12 2019

Có: \(\frac{a^4}{b^2c}+\frac{b^4}{c^2a}+b\ge\frac{3ab}{c}\)

Tương tự, ta cũng được: \(\Sigma_{cyc}\frac{a^4}{b^2c}\ge\frac{3}{2}\Sigma_{cyc}\frac{ab}{c}-\frac{1}{2}\Sigma_{cyc}a\)

Cần CM: \(\Sigma_{cyc}\frac{ab}{c}\ge\Sigma_{cyc}a\)

Có: \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

Tương tự, ta có đpcm 

Dấu "=" xảy ra khi a=b=c 

24 tháng 2 2022

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Dễ dàng chứng minh được:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

Khi đó ta được bất đẳng thức:

\(\frac{\left(a+b+c\right)^3}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge\frac{a^3+b^3+c^3+24abc}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\)

Vậy ta cần chứng minh:

\(\frac{a^3+b^3+c^3+24abc}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge28\)

\(\Leftrightarrow\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge4\)

Theo bất đẳng thức Bunhiacopxki dạng phân thức ta được:

\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}=\frac{a^2+b^2+c^2}{ab+bc+ca}+2\)

Để hoàn thành chứng minh ta cần chỉ ra được:

\(\frac{a^2+b^2+c^2}{ab+bc+ca}+2+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge4\)

\(\Leftrightarrow\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)

Theo bất đẳng thức Cauchy thì bất đẳng thức cuối cùng hiển nhiên đúng.

Như vậy bất đẳng thức được chứng minh. Dấu đẳng thức xẩy ra tại \(a=b=c\)

29 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2b+\dfrac{1}{b}\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\b^2c+\dfrac{1}{c}\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\c^2a+\dfrac{1}{a}\ge2\sqrt{\dfrac{c^2a}{a}}=2c\end{matrix}\right.\)

\(\Rightarrow a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{1}{2}\left(a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge a+b+c\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 2 2022

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

Cộng theo vế hai bất đẳng thức trên ta được:

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)

Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)

8 tháng 3 2017

Giải sách bài tập Toán 10 | Giải sbt Toán 10

⇒(a + 1)(b + 1)(a + c)(b + c) ≥ 16abc.