K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV

28 tháng 2 2020

a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)

b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)

Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)

=>đpcm. Dấu bằng xảy ra khi a=b

c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)

Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2

25 tháng 3 2020
https://i.imgur.com/bx8s8Hy.jpg
25 tháng 3 2020
https://i.imgur.com/AISWXxC.jpg
8 tháng 12 2018

a) Áp dụng BĐT AM - GM:

\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2

Dấu '=' xảy ra <=> a=b=1

8 tháng 12 2018

b) Cũng áp dụng BĐT AM- GM nhưng cho 3 số

7 tháng 12 2021

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

 

19 tháng 6 2018

1) Bất đẳng thức cần chứng minh

\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)

Nếu : ac + bd < 0 : BĐT luôn đúng

Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương

( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )

\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)

\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh

19 tháng 6 2018

2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)

Từ câu 1) ta có :

\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)

\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)

\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)

NV
30 tháng 6 2020

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

NV
30 tháng 6 2020

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

BĐT cần cm tương đương với:
$2(a^4+b^4+c^4)\geq ab^3+bc^3+ca^3+a^3b+b^3c+c^3a$

$\Leftrightarrow (a^4+b^4-a^3b-ab^3)+(b^4+c^4-b^3c-bc^3)+(c^4+a^4-ca^3-c^3a)\geq 0$

$\Leftrightarrow (a-b)^2(a^2+ab+b^2)+(b-c)^2(b^2+bc+c^2)+(c-a)^2(c^2+ca+a^2)\geq 0$

Điều này luôn đúng do:

$(a-b)^2\geq 0; a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0$ với mọi $a,b\in\mathbb{R}$ và tương tự với 2 đa thức còn lại)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$ 

30 tháng 9 2021

Do bđt đối xứng nên ta giả sử: \(a\ge b\ge c\)

Áp dụng Chebyshev cho hai dãy đơn điệu tăng (a;b;c) và(a^3;b^3;c^3):

\(a^4+b^4+c^4=a.a^3+b.b^3+c.^3\ge\dfrac{1}{3}\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)