K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Em dùng AM-GM (ab=<(a^2+b^2)/2 ấy) chứng minh vế trái điều kiện nhỏ hơn bằng vế phải nhé.vì vậy dấu bằng xảy ra khi x^2=y^2=z^2=1/2 thì ta có dpcm.

chúc em học tốt.(cách làm trên đúng với x y z không âm nhé:))

13 tháng 8 2019

à xin lỗi,âm vẫn dùng được,dùng cho số thực em nhé:))

12 tháng 5 2015

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh

30 tháng 9 2019

Áp dụng BĐT Cauchy - Schwarz ta có :
\(\frac{1}{\sqrt{x}+2\sqrt{y}}\le\frac{1}{9}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)

Tương tự cho 2 BĐT trên ta có :

\(\frac{1}{3}VP\le\frac{1}{9}.3\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)

\(=\frac{1}{3}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)=\frac{1}{3}VT\)

Xảy ra khi \(x=y=z\)

Chúc bạn học tốt !!!

30 tháng 9 2019

ta có bdt (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))(a+b+c)\(\ge\)9 (dễ dàng chứng minh) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng bdt trên ta được

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}\ge\frac{9}{2\sqrt{y}+\sqrt{x}}\)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}\ge\frac{9}{\sqrt{y}+2\sqrt{z}}\)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\ge\frac{9}{\sqrt{z}+2\sqrt{x}}\)

Cộng vế theo vế ta đươc đt cần chứng minh

Dấu bằng khi x=y=z

1 tháng 1 2020

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)

\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

20 tháng 3 2019

có biết huệ ko

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

9 tháng 4 2021

ĐỊT MẸ

7 tháng 10 2019

Ta có :

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\) ( Sử dụng phương pháp véctơ )

Do đó :

\(VT^2=\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(=81\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(-80\left(x+y+z\right)^2\ge18\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-80\left(x+y+z\right)^2\)\(\ge162-80=82\)

\(\Rightarrow VT\ge\sqrt{82}\)

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)

7 tháng 10 2019

Cách khác

Áp dụng bđt bunhiacopski có:

\(\left(1.x+9.\frac{1}{x}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{x^2}\right)\)

=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{\left(x+\frac{9}{x}\right)}{\sqrt{82}}\)

CM tương tự: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{\left(y+\frac{9}{y}\right)}{\sqrt{82}}\)

\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(z+\frac{9}{z}\right)}{\sqrt{82}}\)

Cộng vế với vế =>A= \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)}{\sqrt{82}}\)

Áp dụng svac-xơ vào VP có A \(\ge\frac{\left(x+y+z+\frac{81}{x+y+z}\right)}{\sqrt{82}}=\frac{\left(x+y+z+\frac{1}{x+y+z}+\frac{80}{x+y+z}\right)}{\sqrt{82}}\ge\frac{\left(2+80\right)}{\sqrt{82}}\)

<=> \(A\ge\sqrt{82}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

3 tháng 12 2018

mình cũng định hỏi câu này sorry mình cx chẳng bt