K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2015

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\Leftrightarrow2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le1\)

\(\frac{1}{x+y}+\frac{1}{y+z}\ge\frac{4}{2x+y+z}\Rightarrow2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge4\left(\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\right)\)

\(4M\le1\Leftrightarrow M\le\frac{1}{4}\)     \(M=\frac{1}{4}\Leftrightarrow x=y=z=3\)

16 tháng 1 2021
#EF4444KOBIETNHA
16 tháng 1 2021

\(ĐK:x,y,z>\frac{1}{2}\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{3y}{2}+\frac{y+2x}{2}\right)^2\ge4.\frac{3y}{2}.\frac{y+2x}{2}=3y\left(2x+y\right)\)\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{x+2y}{3xy}=\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(VT\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)

Đẳng thức xảy ra khi x = y = z = 1

18 tháng 12 2019

\(\frac{16}{2x+y+z}=\frac{16}{x+x+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)

Tương tự:

\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z};\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)

Cộng lại:

\(16P\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\Rightarrow P\le1\)

dấu "=" xảy ra tại \(x=y=z=\frac{3}{4}\)

30 tháng 4 2020

\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)

Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)

Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)

Đẳng thức xảy ra khi x = y = z = 1

1 tháng 5 2020

Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)

=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)

Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)

Vậy MaxA=3 đạt được khi x=y=z=1

NV
24 tháng 9 2020

\(P=\frac{1}{x+x+y+z}+\frac{1}{x+y+y+z}+\frac{1}{x+y+z+z}\)

\(P\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1007}{2}\)

\(P_{max}=\frac{1007}{2}\) khi \(x=y=z=\frac{3}{2014}\)

24 tháng 4 2020

ĐKXĐ : \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng ( a+b)2 \(\ge4ab\)ta có : 

( x+ 2y)2 = \(\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\left(\frac{2x+y}{2}\right).\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\)

\(\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự : \(\frac{2y+z}{y\left(y+2\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)

                        \(\frac{2z+x}{z.\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Ta có : \(\sqrt{\left(2x-1\right)1}\le\frac{2x-1+1}{2}\)

\(\Rightarrow\sqrt{2x-1}\le x\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

        \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\)

           \(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

Do đó 

\(\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\)

Vậy Max A = 3 khi x = y = z = 1

24 tháng 4 2020

Theo Cô-si ta có:

\(3=\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)

Xét:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}=\frac{1}{3}\left[\frac{\left(x-y\right)^2}{xy\left(x+2y\right)}+\frac{\left(y-z\right)^2}{yz\left(y+2z\right)}+\frac{\left(z-x\right)^2}{zx\left(z+2x\right)}\right]\ge0\)

\(\Rightarrow\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}\le3\)

12 tháng 10 2017

Ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(1\right)\)

Tương tự ta có: 

\(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\Rightarrow M\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{16}.4.4=1\)

12 tháng 10 2017

Để đơn giản bài toán thì ta xét trường hợp cá biệt. \(x=y\) thì đề ban đầu trở thành.

\(x,z>0,\frac{2}{x}+\frac{1}{z}=4\)

Đễ thấy \(\frac{1}{z}< 4\)

\(\Leftrightarrow z>0,25\)

Với \(z\) càng gần bằng 0,25 thì \(\frac{1}{z}\)càng gần với 4

\(\Rightarrow\frac{2}{x}=4-\frac{1}{z}\) càng gần = 0 

\(\Rightarrow x\)càng lớn

\(\Rightarrow M\) càng bé nhưng giá trị chỉ dần về 0 chứ không thể bằng 0 được. 

Vậy đề trên là sai. 

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

2 tháng 5 2020

Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)

Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)

\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)

(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)