K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

31 tháng 3 2021

Câu hỏi của Trần Lê Nguyên Mạnh - Toán lớp 9 - Học trực tuyến OLM

23 tháng 8 2020

Áp dụng bất đẳng thức Bunyakovsky ta được:          \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)

Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)

Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra a = b = c = 1

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c

28 tháng 12 2020

Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho

25 tháng 12 2020

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\)

\(\Leftrightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge a+\sqrt{bc}\)

Do đó \(\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{a}}{\left(c+a\right)\left(c+b\right)}+\frac{bc}{\left(c+a\right)\left(c+b\right)}\left(1\right)\)

Chứng minh tương tự ta được: 

\(\hept{\begin{cases}\sqrt{\frac{bc}{\left(c+b\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+b\right)\left(a+b\right)}}{\left(c+b\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}\left(2\right)\\\sqrt{\frac{ca}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{ca\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{c}}{\left(c+a\right)\left(a+b\right)}+\frac{ab}{\left(a+c\right)\left(a+b\right)}\left(3\right)\end{cases}}\)

\(\Rightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\)

\(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(a+c\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+\)\(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}\left(4\right)\)

Ta lại có: \(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}+\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{bc\left(b+c\right)+ac\left(a+c\right)+ab\left(a+b\right)+2abc}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}\)

\(=\frac{bc\left(a+b+c\right)+ca\left(a+b+c\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{c\left(a+b+c\right)\left(b+a\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

\(\left(4\right)\Leftrightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)\(\ge\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó ta cần chứng minh \(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge1+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Điều này tương đương với \(\sqrt{a}\left(b+c\right)+\sqrt{b}\left(a+c\right)+\sqrt{c}\left(a+b\right)\ge6\sqrt{abc}\left(5\right)\)

Theo bất đẳng thức AM-GM thì (5) luôn đúng

Dấu "=" xảy ra khi (1);(2);(3) và (5) xảy ra dấu "=". điều này tương đương với a=b=c

Vậy ta có điều phải chứng minh

=))

12 tháng 3 2017

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)