K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

\(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)

\(P=a-\frac{2abc}{a^2+2bc}+b-\frac{2abc}{b^2+2ca}+c-\frac{2abc}{c^2+2ab}+3abc\)

\(P=\left(a+b+c\right)-2abc\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)+3abc\)

\(P=3-2abc\left(\frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\right)+3abc\)(Do a+b+c=3)

Áp dụng BĐT Schwarz cho 3 phân số:

\(\frac{1}{a^2+2abc}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{9}{\left(a+b+c\right)^2}=\frac{9}{3^2}=1\)

\(\Rightarrow P\le3-2abc+3abc=3+abc\)

Áp dụng BĐT Cauchy cho 3 số a,b,c: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)

\(\Rightarrow P\le3+1=4\).

Vậy \(Max_P=4.\)Đẳng thức xảy ra khi a=b=c=1.

13 tháng 6 2018

Đợi chút; phần áp dụng BĐT schwarz, cái đầu tiên mình gõ thừa chữ "c" ở mẫu thức, bn sửa đi nhé.

21 tháng 10 2018

Ta có:

\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)

\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)

\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)

\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Lại có:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)

\(\)

16 tháng 4 2021

\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).

Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+c^2\ge2ac\).

\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).

\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)

\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).

\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).

\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)

\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .

Chứng minh tương tự, ta được:

\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)

Chứng minh tương tự, ta dược:

\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).

\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).

Mà \(ab+bc+ca=3abc\)(theo đề bài).

Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).

\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).

\(\Leftrightarrow K\ge\frac{3}{2}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).

Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).

13 tháng 7 2020

Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)

Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\)\(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)

Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)

Đẳng thức xảy ra khi a = b = c = 1

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

20 tháng 4 2018

ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN

28 tháng 8 2016

\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)

\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)

Tương tự với các biểu thức còn lại, kết hợp với 

\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

là được đáp án.