K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Bài toán phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}\)(bất đẳng thức Svac bạn có trể lên mạng tra)

Bài toán chính:

\(\frac{1}{1+b-a}+\frac{1}{1+c-b}+\frac{1}{1+a-c}>=\frac{9}{1+1+1+a+b+c-a-b-c}\)

Hay \(\frac{1}{1+b-a}+\frac{1}{1+c-b}+\frac{1}{1+a-c}>=3>1\)

Dấu bằng không xảy ra(mình nghĩ là bạn sai đề)

Chúc bạn học tốt!

Đặt  x = \(\frac{1}{2a+1},y=\frac{1}{2b+1},z=\frac{1}{2c+1}\)

Khi đó \(a=\frac{1-x}{2x},b=\frac{1-y}{2y},c=\frac{1-z}{2z}\)

Ta thấy 0 < x, y, z < 1 và x + y + z \(\ge1\)

Bất đẳng thức cần chứng minh trở thành :

\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\ge\frac{3}{7}\)

Áp dụng bất đẳng thức Bunhiacốpxki ta có :

\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)

\(=\frac{x^2}{3x-2x^2}+\frac{y^2}{3y-2y^2}+\frac{z^2}{3z-2z^2}\)

\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-2\left(x^2+y^2+z^2\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-\frac{2}{3}\left(x+y+z\right)^2}\)

\(=\frac{3}{\frac{9}{x+y+z}-2}\ge\frac{3}{7}\)

Cbht

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

1 tháng 2 2015

(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))>=\(3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

Do đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)>=\(\frac{9}{a+b+c}=9\)(không phải chỉ >=1 đâu bạn nhé)

10 tháng 10 2016

e ơi e nên tải tài liệu của võ quốc bá cẩn đi 

9 tháng 11 2016

Đặt \(T=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\) (*)

Ta có: \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:

\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)

\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)

\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{ab}{ab+1+a}\)

\(=\frac{1+a+ab}{1+a+ab}=1=VP\) (Đpcm)

 

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
4 tháng 8 2020

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow2.\left(a+b+c\right)=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{1}{b}}+2\sqrt{c.\frac{1}{c}}\)

                                                          \(=2+2+2=6\)

\(\Rightarrow a+b+c\ge3\)

\(P=a+b^{2019}+c^{2020}\)

   \(=a+\left(b^{2019}+1.2018\right)+\left(c^{2020}+1.2019\right)-4037\)

\(\ge a+2019.\sqrt[2019]{b^{2019}.1^{2018}}+2020.\sqrt[2020]{c^{2020}.1^{2019}}-4037\)(BDT Cauchy-Schwarz)

\(=a+2019b+2020c-4037\)

Do \(a\le b\le c\)nên

\(\Rightarrow P\ge a+2019b+2020c\)

        \(\ge a+\left(\frac{2017}{3}+\frac{4040}{3}\right)b+\left(\frac{2020}{3}+\frac{4040}{3}\right)c-4037\)

        \(\ge a+\frac{2017}{3}a+\frac{4040}{3}b+\frac{2020}{3}a+\frac{4040}{3}c-4037\)

         \(=\frac{4040}{3}.\left(a+b+c\right)-4037\)

         \(\ge4040-4037=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)