K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

4 tháng 5 2017

1 tháng 4 2019

7 tháng 1 2021

a) \(u_{n+3}=sin\left[4\left(n+3\right)-1\right]\dfrac{\pi}{6}=sin\left[4n+12-1\right]\dfrac{\pi}{6}\\ =sin\left[\left(4n-1\right)\dfrac{\pi}{6}+2\pi\right]=sin\left(4n-1\right)\dfrac{\pi}{6}=u_n\)

b) 

\(u_1=u_4=...=u_{13}=sin\dfrac{\pi}{2}\\ u_2=u_5=...=u_{14}=sin\dfrac{7\pi}{6}\\ \\ u_3=u_6=...=u_{15}=sin\dfrac{11\pi}{6}\\ \Rightarrow u_1+u_2+...+u_{15}=5\left(sin\dfrac{\pi}{2}+sin\dfrac{7\pi}{6}+\dfrac{11\pi}{6}\right)=0\)

24 tháng 12 2017

Đáp án đúng : C

6 tháng 10 2018

Đáp án D

6 tháng 2 2021

\(\lim\limits\dfrac{\sqrt{\dfrac{an^3}{n^3}+\dfrac{n^2}{n^3}+\dfrac{1}{n^3}}-\sqrt{\dfrac{2n^3}{n^3}+\dfrac{n^2}{n^3}}}{\sqrt{\dfrac{4n^3}{n^3}+\dfrac{3n}{n^3}}}=\dfrac{\sqrt{a}-\sqrt{2}}{2}\le\sqrt{2}\)

\(\Rightarrow\sqrt{a}\le2\sqrt{2}+\sqrt{2}\Rightarrow-\left(2\sqrt{2}+\sqrt{2}\right)^2\le a\le\left(2\sqrt{2}+\sqrt{2}\right)^2\)

Dung ko nhi :D?

23 tháng 5 2017

a)
Với \(n=1\) .
\(2^n=2^2=4;2n+1=2.2+1=5\).
Với n = 1 thì \(2^n< 2n+1\).
Với \(n=2\)
\(2^n=2^3=8;2n+1=2.3+1=7\)
Với n = 2 thì \(2^n>2n+1\).
Ta sẽ chứng minh bằng quy nạp giả thiết:
Với \(n\ge2\) thì \(2^n>2n+1\). (*)
Với n = 2 (*) đúng .
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>2k+1\).
Ta sẽ chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>2\left(k+1\right)+1\).
Thật vậy từ giả thiết quy nạp ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2>2\left(k+1\right)+1\) (với \(k\ge2\)).
Vậy điều phải chứng minh đúng với mọi n.

23 tháng 5 2017

b)
Tương tự như câu a ta kiểm tra được với \(n\ge7\) thì \(2^n>n^2+4n+5\). (*)
Với n = 7.
\(2^7=128\); \(n^2+4n+5=7^2+4.7+5=82\).
\(2^7>7^2+4.7+7\) nên (*) đúng với n = 7.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>k^2+4k+5\).
Ta cần chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>\left(k+1\right)^2+4\left(k+1\right)+5\).
Thật vậy từ giả thiết quy nạp suy ra:
\(2^{k+1}=2.2^k>2\left(k^2+4k+5\right)=2k^2+8k+10\)
\(=\left(k+1\right)^2+4\left(k+1\right)+5+k^2+2k\)\(>\left(k+1\right)^2+4\left(k+1\right)+5\).
Vậy điều cần chứng minh đúng với mọi \(n\ge7\).

\(H=\dfrac{a^2\left(a^{-2}b^3\right)^2\cdot b^{-1}}{\left(a^{-1}\cdot b\right)\cdot a^{-5}\cdot b^{-2}}\)

\(=\dfrac{a^2\cdot a^{-4}\cdot b^6\cdot b^{-1}}{a^{-1-5}\cdot b^{1-2}}\)

\(=\dfrac{a^{-2}\cdot b^5}{a^{-4}\cdot b^{-1}}=a^{-2+4}\cdot b^{5+1}=a^2b^6\)

NV
13 tháng 1

\(H=\dfrac{a^2.a^{-4}.b^6.b^{-1}}{a^{-1}.b.a^{-5}.b^{-2}}=\dfrac{a^{2-4}.b^{6-1}}{a^{-1-5}.b^{1-2}}=\dfrac{a^{-2}.b^5}{a^{-6}.b^{-1}}=a^{-2-\left(-6\right)}.b^{5-\left(-1\right)}=a^4b^6\)