K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

a^2+b^2+c^2>=ab+bc+ca

=>2(a^2+b^2+c^2)>=2(ab+bc+ca)

=>3(a^2+b^2+c^2)>=(a+b+c)^2

Dấu "=" xảy ra <=> a=b=c

=> a=b=c=2

Còn lại tự làm ok chứ

14 tháng 8 2019

\(a+b+c=6\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)

\(\Leftrightarrow12+2\left(ab+bc+ca\right)=36\)

\(\Leftrightarrow ab+bc+ca=12\)

Do đó \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(VT\ge0\forall x;y;z\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(a+b+c=6\Leftrightarrow a=b=c=2\)

\(P=3\cdot\left(2-3\right)^{2013}\)

\(P=3\cdot\left(-1\right)\)

\(P=-3\)

Vậy....

Y
20 tháng 5 2019

gt \(\Rightarrow\left\{{}\begin{matrix}b\left(a^2+2ac+c^2\right)+ac\left(a+c\right)+b^2\left(a+c\right)=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+c\right)\left[b\left(a+c\right)+ac+b^2\right]=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\\a^{2013}+b^{2013}+c^{2013}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a+b=0\Rightarrow a^{2013}+b^{2013}=0\\b+c=0\Rightarrow b^{2013}+c^{2013}=0\\a+c=0\Rightarrow a^{2013}+c^{2013}=0\end{matrix}\right.\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow Q=1\)

15 tháng 7 2019

\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)

=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>a=-b hoặc a=-c hoặc b=-c (1)

=>a=1 hoăc b=1 hoặc c=1 (2)

từ 1 và 2 => Q=1

AH
Akai Haruma
Giáo viên
15 tháng 3 2018

Lời giải:

Có: \(\left\{\begin{matrix} a+b+c=9\\ a^2+b^2+c^2=27\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b+c)^2=81\\ a^2+b^2+c^2=27\end{matrix}\right.\)

\(\Rightarrow (a+b+c)^2-(a^2+b^2+c^2)=54\)

\(\Leftrightarrow 2(ab+bc+ac)=54\Leftrightarrow ab+bc+ac=27\)

Do đó: \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=0(*)\)

Ta thấy: \((a-b)^2; (b-c)^2; (c-a)^2\geq 0\forall a,b,c\in\mathbb{R}\)

Suy ra \((*)\) xảy ra khi và chỉ khi

\((a-b)^2=(b-c)^2=(c-a)^2=0\Leftrightarrow a=b=c\)

Khi đó: \(a=b=c=\frac{9}{3}=3\) (thỏa mãn)

\(P=(a-2)^{2015}+(b-3)^{2016}+(c-4)^{2017}=1^{2015}+0^{2016}+(-1)^{2017}\)

\(P=1+0+(-1)=0\)

NV
11 tháng 6 2020

\(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)

\(27=a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\Rightarrow\left(a+b+c\right)^2\le81\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=3\)

\(\Rightarrow P=1^{2015}+0^{2016}-1^{2017}=0\)

thiếu đề. (2)

12 tháng 5 2021

`(x-1)^2>=0`

3 tháng 7 2019

Ta có \(a^3+b^3+c^3=3abc\)

=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a+b+c\ne0\)

=> \(a^2+b^2+c^2-ab-bc-ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Do \(VT\ge0\)

=> a=b=c

Thay vào ta được

P=2018^3

5 tháng 11 2018

a + b + c = 6

=> (a + b + c)2 = 36

<=> a2 + b2 + c2 + 2(ab + bc + ca) = 36

<=> a2 + b2 + c2 = 36 - 2.12 = 12

<=> a2 + b2 + c2 = ab + bc + ca

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> a = b = c = 2

P = (a - 3)2018 + (b - 3)2018 + (c - 3)2018 = (-1)2018 + (-1)2018 + (-1)2018 = 1 + 1 + 1 = 3

NV
5 tháng 9 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left(a^{2013}+b^{2013}\right)\left(b^{2013}+c^{2013}\right)\left(c^{2013}+a^{2013}\right)=0\)

\(\Rightarrow P=\frac{17}{25}\)