K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1a)\(a^2+b^2\ge\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{1}{4}\)(1)

Lại có:\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow\left(1\right)\) đúng\(\Rightarrowđpcm\)

1b)\(a^2+b^2+c^2\ge\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{1}{6}\)(2)

Lại có:\(\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{\left(a+b+c\right)^2}{6}=\dfrac{1}{6}\)

\(\Rightarrow\left(2\right)\) đúng\(\Rightarrowđpcm\)

2b)Ta có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(bđt phụ)

\(\Leftrightarrow ab+bc+ca\le\dfrac{4^2}{3}=\dfrac{16}{3}\)

\(\Rightarrow MAXA=\dfrac{16}{3}\Leftrightarrow x=y=z=\dfrac{4}{3}\)

NV
4 tháng 10 2021

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)

\(=abc-abc+1-1=0\) (đpcm)

29 tháng 9 2020

Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2=\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ca.ab=abc\left(a+b+c\right)\).

Vậy ta có đpcm.

25 tháng 6 2017

Ta có

\(a^4+b^4+c^4-abc\left(a+b+c\right)=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)-abc\left(a+b+c\right)\)

\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab+bc+ac\right)^2-2a^2bc-2ab^2c-2abc^2\right]-a^2bc-ab^2c-abc^2\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(ab+bc+ac\right)^2+4a^2bc+4ab^2c+4abc^2-a^2bc-ab^2c-abc^2\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\right]^2-2\left(ab+bc+ac\right)^2+abc\left(4a+4b+4c-a-b-c\right)\)

\(=\left(a+b+c\right)^4-2\left(a+b+c\right)^2.2\left(ab+bc+ac\right)+4\left(ab+bc+ca\right)^2-2\left(ab+bc+ac\right)^2+abc\left(3a+3b+3c\right)\)

\(=\left(a+b+c\right)^4-4\left(a+b+c\right)^2\left(ab+bc+ca\right)+2\left(ab+bc+ac\right)^2+3abc\ge0\)

13 tháng 12 2017

Ap dung BDt co si ta co

\(a^4+b^4\ge2a^2b^2\)

\(b^4+c^4\ge2b^2c^2\)

\(c^4+a^4\ge2a^2c^2\)

=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)

Lai co \(a^2b^2+b^2c^2\ge2ab^2c\)

          \(b^2c^2+c^2a^2\ge2abc^2\)

          \(c^2a^2+a^2b^2\ge2a^2bc\)

=> \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)(2)

Từ (1) va (2) => \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

12 tháng 11 2017

Chứng minh bđt phụ :

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)với \(\forall x;y;z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(*)

Áp dụng bđt (*), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)

Lại có :\(a^2b^2+b^2c^2+c^2a^2\ge abbc+bcca+caab=abc\left(a+b+c\right)\)(2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Dấu = xảy ra khi a=b=c     

Vậy \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Phần dấu = xảy ra không biết bạn có cần không nhưng thầy mình bảo phải ghi vào mới được điểm tối đa

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)