K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Hình như đề sai rùi bạn ơi hình như phải cm >= 3 chứ

1 tháng 2 2018

bạn giải thử

27 tháng 11 2019

Áp dungj BĐt Cauchy - Schwarz :
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)

Cộng theo vế và thu gọn ta được :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có : đpcm

Dấu " = " xảy ra khi \(a=b=c\)

27 tháng 11 2019

Ta có

\(P=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)

áp dụng bđt Cauchy-Schwarz ta có

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)

C/m tương tự ta có

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)

\(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\left(3\right)\)

Cộng vế theo vế (1) (2) và (3)   => đpcm

22 tháng 2 2017

Dễ dàng CM BĐT sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b},\forall a,b>0\)

Áp dung: \(\hept{\begin{cases}\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\\\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\\\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{2p-c-a}=\frac{4}{b}\end{cases}}\)

Cộng vế theo vế các BĐT trên => ĐPCM

3 tháng 4 2016

ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )

ta có 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)

tương tự ta có 

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)

cộng theo vế của bđt (1);(2);(3) ta có

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

2 tháng 9 2016

Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)

do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.

Áp dụng bđt  \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được

\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

 

2 tháng 9 2016

chứng minh hộ mình bất đẳng thức được không

 

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{2p-a-b}=\frac{4}{c}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)

Cộng theo vế và thu gọn ta được \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\geq 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

5 tháng 3 2017

cậu giỏi quá !yeu

23 tháng 10 2018

Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!

23 tháng 10 2018

bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là

Đáp án đề thi hsg toán 9 huyện Đức Thọ năm  học 2018-2019 Đây là bài cuối của đề ak!

18 tháng 2 2017

Từ giả thiết \(a+b+c=1\Rightarrow2a+2b+2c=2\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)

Lại có \(\frac{ab+c}{a+b}=\frac{a\left(a+b+c\right)+bc}{b+c}=\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Viết lại BĐT cần chứng minh như sau:

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{b+c}+\frac{\left(a+c\right)\left(a+b\right)}{c+a}\ge2\)

Đặt \(\hept{\begin{cases}x=b+c\\y=a+c\\z=a+b\end{cases}}\) BĐT trên trở thành 

\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\left(\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\right)\)

ĐÚng theo  BĐT AM-GM vậy c/m xong

15 tháng 9 2015

Chú ý rằng \(\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\to\) \(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}=-\frac{a-b}{a+b}\cdot\frac{b-c}{b+c}\cdot\frac{c-a}{c+a}\)
Ta có \(\left|\left(a-b\right)\left(b-c\right)\left(c-a\right)\right|=\left|a-b\right|\cdot\left|b-c\right|\cdot\left|c-a\right|\). Theo bất đẳng thức tam giác, hiệu độ dài hai cạnh bé hơn cạnh còn lại. Vì vậy mà \(a>\left|b-c\right|,b>\left|c-a\right|,c>\left|a-b\right|\to\)\(\left|a-b\right|\cdot\left|b-c\right|\cdot\left|c-a\right|\)\(abc.\)

Do vậy mà \(\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|=\left|\frac{a-b}{a+b}\cdot\frac{b-c}{b+c}\cdot\frac{c-a}{c+a}\right|=\frac{\left|\left(a-b\right)\left(b-c\right)\left(c-a\right)\right|}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}