K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

\(\frac{1}{3a}+\frac{1}{3b}\ge\frac{1}{2a+b}+\frac{1}{2b+a}\)

dự đoán dấu = xảy ra khi a=b=1

áp dụng cô si cho VT ta có

\(\frac{1}{3a}+\frac{3a}{9}\ge2\sqrt{\frac{3a}{3a.9}}=\frac{2}{3}\)

\(\frac{1}{3b}+\frac{3b}{9}\ge2\sqrt{\frac{3b}{3b.9}}=\frac{2}{3}\)

+ vế với vế ta được

\(VT+\frac{1}{3}\left(a+b\right)\ge\frac{4}{3}\) (1)

áp dụng cô si cho VP ta được

\(\frac{1}{2a+b}+\frac{\left(2a+b\right)}{9}\ge2\sqrt{\frac{\left(2a+b\right)}{\left(2a+b\right).9}}=\frac{2}{3}\)

\(\frac{1}{2b+a}+\frac{\left(2b+a\right)}{9}\ge2\sqrt{\frac{\left(2b+a\right)}{\left(2b+a\right).9}}=\frac{2}{3}\)

\(VP+\frac{1}{3}\left(a+b\right)\ge\frac{4}{3}\) (2)

Từ 1 và 2 \(VT\ge VP...."="\rightarrow a=b=1\)

29 tháng 9 2017

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)

\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)

29 tháng 9 2017

thanks

3 tháng 11 2017

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:

\(\dfrac{1}{a+3b}+\dfrac{1}{a+b+2c}\ge\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{b+3c}+\dfrac{1}{2a+b+c}\ge\dfrac{2}{a+b+2c};\dfrac{1}{c+3a}+\dfrac{1}{a+2b+c}\ge\dfrac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\dfrac{1}{b+3c}+\dfrac{1}{c+3a}+\dfrac{1}{a+3b}\)

\(\ge\dfrac{1}{a+b+2c}+\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}=VP\)

12 tháng 6 2020

Theo BĐT Bunyakovsky, ta có: \(\frac{7}{2a+b+c}=\frac{7^2}{7\left(2a+b+c\right)}=\frac{\left(2+1+4\right)^2}{2\left(a+3b\right)+\left(b+3c\right)+4\left(c+3a\right)}\)

\(\le\frac{2^2}{2\left(a+3b\right)}+\frac{1^2}{\left(b+3c\right)}+\frac{4^2}{4\left(c+3a\right)}\)

\(=\frac{2}{a+3b}+\frac{1}{b+3c}+\frac{4}{c+3a}\)(1)

Hoàn toàn tương tự: \(\frac{7}{2b+c+a}\le\frac{2}{b+3c}+\frac{1}{c+3a}+\frac{4}{a+3b}\)(2); \(\frac{7}{2c+a+b}\le\frac{2}{c+3a}+\frac{1}{a+3b}+\frac{4}{b+3c}\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(7\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\le7\left(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\right)\)

hay \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = c

3 tháng 12 2017

Áp dụng bđt 1/a+1/b >= 4/a+b

Xét 1/a+3b + 1/b+2c+a >= 4/2a+4b+2c = 2/a+2b+c

Tương tự : 1/b+3c + 1/c+2a+b >= 4/2a+2b+4c = 2/a+b+2c

1/c+3a + 1/a+2b+c >= 4/4a+2b+2c = 2/2a+b+c

=> VT + VP >= 2VP

=> VT >= VP ( ĐPCM)

k mk nha

AH
Akai Haruma
Giáo viên
2 tháng 1 2020

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)

Áp dụng BĐT AM-GM:

\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)

\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)

Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:

\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)

Áp dụng BĐT Cauchy_Schwarz và AM-GM:

\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)

\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)

Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.

Dấu "=" xảy ra khi $a=b=c$

3 tháng 10 2017

a ) \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\frac{1}{2xy}+\frac{1}{x^2+y^2}\)

Ta có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\Rightarrow\frac{1}{2xy}\ge\frac{1}{\frac{1}{2}}=2\)

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{4}{2xy+x^2+y^2}=\frac{4}{\left(x+y\right)^2}=\frac{4}{1}=4\)

\(\Rightarrow P\ge2+4=6\) Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

b ) Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z>0\) ta được :

\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{2b+a}=\frac{1}{b+b+a}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\right)\)

Cộng vế với vế ta được :

 \(\frac{1}{2a+b}+\frac{1}{2b+a}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}\right)\)

\(=\frac{1}{3a}+\frac{1}{3b}\) hay \(\frac{1}{3a}+\frac{1}{3b}\ge\frac{1}{2a+b}+\frac{1}{2b+a}\)(đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)

\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)

Cộng theo vế rồi rút gọn ta thu được

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

4 tháng 11 2017

@Ace Legona bác giúp em với

8 tháng 11 2017

áp dụng  BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\)

\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng các BĐt trên theo vế ta được:

\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\left(đpcm\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

2 tháng 12 2017

giúp mình vs  CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2