K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

vì a;b>0\(\Rightarrow a+b>=2\sqrt{ab}\Rightarrow1>=2\sqrt{ab}\Rightarrow\frac{1}{2}>=\sqrt{ab}\Rightarrow\frac{1}{4}>=ab\)(bđt cosi)

dấu = xảy ra khi a=b=\(\frac{1}{2}\)

\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=1+\frac{2}{a}+\frac{1}{a^2}+1+\frac{2}{b}+\frac{1}{b^2}\)

\(=2+\left(\frac{2}{a}+\frac{2}{b}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}\right)>=2+2\sqrt{\frac{2}{a}\cdot\frac{2}{b}}+2\cdot\sqrt{\frac{1}{a^2}\cdot\frac{1}{b^2}}\)(bđt cosi )

dấu = xảy ra khi \(\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=\frac{1}{2};\frac{1}{a^2}=\frac{1}{b^2}\Rightarrow a=b=\frac{1}{2}\)\(\Rightarrow\)dấu = xảy ra khi \(a=b=\frac{1}{2}\)

\(=2+\frac{4}{\sqrt{ab}}+\frac{2}{\sqrt{a^2b^2}}=2+\frac{4}{\sqrt{ab}}+\frac{2}{ab}>=2+\frac{4}{\frac{1}{2}}+\frac{2}{\frac{1}{4}}=2+8+8=18\)

\(\Rightarrow M>=18\Rightarrow\)min M là 18

vậy min M là 18 khi a=b=\(\frac{1}{2}\)

15 tháng 1 2021

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :

\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\frac{\left(1+\frac{1}{a}\right)^2}{1}+\frac{\left(1+\frac{1}{b}\right)^2}{1}\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}=\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)}{2}\)(1)

Lại có \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)(2) 

Từ (1) và (2) => \(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra khi a = b = 1/2

Vậy MinM = 18, đạt được khi a = b = 1/2

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

18 tháng 7 2020

Ta có: \(\frac{\left(a+b\right)}{2}=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

<=> \(a+b\le1\)

\(P=\frac{1}{a^2+b^2+2}+\frac{1}{ab}\ge\frac{1}{\frac{\left(a+b\right)}{2}+2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge\frac{1}{\frac{1}{2}+2}+\frac{1}{\frac{1}{4}}=\frac{22}{5}\)

Dấu = xảy ra <=> a = b = 1/2 

18 tháng 7 2020

mình chưa hiểu tại sao a+b<=1

24 tháng 8 2020

Ta có : \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)

Sử dụng BĐT Bunhiacopxki ta có :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}=\frac{1^2}{a^2}+\frac{1^2}{b^2}+\frac{2^2}{2ab}\ge\frac{\left(1+1+2\right)^2}{a^2+b^2+2ab}\)

\(=\frac{4^2}{\left(a+b\right)^2}=\frac{16}{2^2}=\frac{16}{4}=4\)

Dấu = xảy ra khi và chỉ khi \(a=b=1\)

Vậy \(A_{min}=4\)khi \(a=b=1\)

24 tháng 8 2020

\(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)

\(\ge\frac{\left(1+1+2\right)^2}{a^2+2ab+b^2}=\frac{16}{\left(a+b\right)^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra <=> a = b = 1