K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

 Cosi: ab <= 1/4 
Quy đồng P, ta đc: 
P = (2ab+1)/(ab+2). 
Ta cm P <= 2/3 
<=> 3(2ab+1) <= 2(ab+2) 
<=> ab<= 1/4 (đúng) 
Vậy maxP = 2/3 khi a=b =1/2

17 tháng 6 2019

#)Trả lời :

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Tách VT = A + B và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu ''='' xảy ra khi a = b = c = 1

Tham khảo nhé ^^

28 tháng 5 2020

Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)

\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)

Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)

Đẳng thức xảy ra khi a = b = c = 1

23 tháng 8 2016

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT=A+B và xét

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu = khi a=b=c=1

11 tháng 1 2019

2 + 2 =22

6 tháng 6 2019

Cách làm dài bạn thông cảm mình  nghĩ được có zậy thui ak :/

Ta có a, b là các số thực dương 

Từ \(a+3b=ab\Leftrightarrow\frac{1}{b}+\frac{3}{a}=1\ge2\sqrt{\frac{3}{ab}}.\)(bất đẳng thức Cauchy cho 2 số không âm)

\(\Leftrightarrow\frac{12}{ab}\le1\Leftrightarrow ab\ge12\)\(\Leftrightarrow84ab-72ab\ge144\Leftrightarrow84ab\ge72\left(ab+2\right)\)

\(\Leftrightarrow\frac{12ab}{ab+2}\ge\frac{72}{7}\left(1\right)\)

Ta có \(P=\frac{a^2}{1+3b}+\frac{9b^2}{1+a}\ge2\sqrt{\frac{a^2}{1+3b}\frac{9b^2}{1+a}}=\frac{6ab}{\sqrt{\left(1+a\right)\left(1+3b\right)}}\)(Bất đẳng thức Cauchy)

                                                      \(\ge\frac{6ab}{\frac{1+a+1+3b}{2}}=\frac{12ab}{a+3b+2}=\frac{12ab}{ab+2}\)(Bất đẳng thức Cauchy ngược dấu )

Kết hợp với (1) ta được :

\(P\ge\frac{12ab}{ab+2}\ge\frac{72}{7}.\)

Vậy giá trị nhỏ nhất của \(P=\frac{72}{7}\Leftrightarrow\hept{\begin{cases}a=3b\\a+3b=ab\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=2\end{cases}.}}\)

23 tháng 8 2016

khó phết

23 tháng 8 2016

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT = A + b và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\Sigma\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\Sigma\left(3a-\frac{3ab}{2}\right)\)\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\Sigma\left(1-\frac{b^2}{1+b^2}\right)\ge\Sigma\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\Sigma ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)=3}\))

Dấu = khi a = b = c = 1 .