K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+4\right)\left(a^2+4b^2\right)\ge\left(a+4b\right)^2\)

\(\Rightarrow5\left(a^2+4b^2\right)\ge\left(a+4b\right)^2\)

\(\Rightarrow5\left(a^2+4b^2\right)\ge\left(a+4b\right)^2=1^2=1\)

\(\Rightarrow5\left(a^2+4b^2\right)\ge1\Rightarrow a^2+4b^2\ge\dfrac{1}{5}\)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{5}\)

NV
11 tháng 6 2019

\(1=\left(1.a+2.2b\right)^2\le\left(1^2+2^2\right)\left(a^2+4b^2\right)=5\left(a^2+4b^2\right)\)

\(\Rightarrow a^2+4b^2\ge\frac{1}{5}\)

Dấu "=" khi \(a=b=\frac{1}{5}\)

9 tháng 4 2017

dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)

Ta có:

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)

\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)

\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)

9 tháng 4 2017

\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)

\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)

Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)

\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)

\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)

\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)

Từ (3) và (4)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)

24 tháng 4 2019

Đặt \(T=a^2+4b^2\)(1)

Vì a+4b=1 => a=1-4b

Thế vào (1) ta được: \(T=\left(1-4b\right)^2+4b^2=20b^2-8b+1\)

<=> \(T=20\left(b^2-2\cdot\frac{1}{5}\cdot b+\frac{1}{25}\right)+\frac{1}{5}=20\left(b-\frac{1}{5}\right)^2+\frac{1}{5}\)

=> \(T\ge\frac{1}{5}\left(đpcm\right)\)

8 tháng 6 2019

trả lời

anh ơi cái anyf dùng bất đẳng thức

(ax+by)^2<= (a^2+b^2)(x^2+y^2) cũng được nhỉ

cách này nhanh hơn đó ạ

hok tốt

26 tháng 3 2018

b) \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

= \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

=\(2+\dfrac{a}{b}+\dfrac{b}{a}\)

áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> \(2+\dfrac{a}{b}+\dfrac{b}{a}\ge4\)

<=> \(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)(đpcm)

17 tháng 3 2017

thỏa mãn cái j ? chứng minh cái gì ? đề quá ẩu

18 tháng 3 2017

\(A=\dfrac{1+1+2a}{1+2a}+\dfrac{2-\left(1+4b\right)}{1+4b}=1+\dfrac{1}{1+2a}+\dfrac{2}{1+4b}-1\)

vậy nếu:

a<-1/2

b<-1/4 luôn thỏa mãn a+b<=3

A< 0 => sai--> xem lại đề

5 tháng 6 2019

cho a,b dương mới được