K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

ta có a^2+b^2=a^2+2ab+b^2-2ab=(a+b)^2-(a+b)ab=(a+b)(a+b-ab)=2(2-ab)

vì a+b=2=> a=2-b

=> 2(2-ab)=2(2-2b+b^2)=2((b-1)^2+1)

vì (b-1)^2>=0 với mọi b

=> (b-1)^2+1>=1 với mọi b

=> 2((b-1)^2+1)>=2 với mọi b

=> a^2+b^2>=2=> a^2+b^2>=a+b

Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)

13 tháng 12 2017

⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2

⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0

⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0

⇔[(a+b)2−ab−1]2≥0(đúng) 

           k mình đi

27 tháng 2 2021

Đặt A =\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\)

Vì a + b \(\ne\)0 nên A luôn được xác định.

 Giả sử \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)^2}+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}-\frac{2\left(a+b\right)^2}{\left(a+b\right)^2}\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)(vì a + b \(\ne\)0)

\(\Leftrightarrow[\left(a^2+2ab+b^2\right)-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow[\left(a+b\right)^2-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-\left[2ab\left(a+b\right)^2+2\left(a+b\right)^2\right]+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2\right]^2-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)

\(\left[\left(a+b\right)^2-\left(ab+1\right)^2\right]^2\ge0\)(luôn đúng)

Dấu bằng xảy ra 

\(\Leftrightarrow\hept{\begin{cases}a+b\ne0\\\Leftrightarrow a=b\end{cases}}\Leftrightarrow a=b\left(a,b\ne0\right)\)

Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge\)2 với a, b là các số thỏa mãn a+b \(\ne\)0

27 tháng 2 2021

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b\ne0\end{cases}\Leftrightarrow a=b}\)(a,b \(\ne\)0)

Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\) với a, b là các số thỏa mãn \(a+b\ne0\)

3 tháng 8 2023

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.

23 tháng 3 2017

Từ \(a+b+c=1\Rightarrow2a+2b+2c=1\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)

Ta có: \(\frac{a+bc}{b+c}=\frac{a\left(a+b+c\right)+bc}{b+c}=\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Tương tự ta viết lại BĐT cần chứng minh như sau:

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}+\frac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\)

Đặt \(\hept{\begin{cases}x=b+c\\y=a+c\\z=a+b\end{cases}}\) thì BĐT cần chứng minh là:

\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\forall\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\)

Áp dụng BĐT AM-GM ta có: 

\(\hept{\begin{cases}\frac{xy}{z}+\frac{xz}{y}\ge2x\\\frac{xz}{y}+\frac{yz}{x}\ge2y\\\frac{yz}{x}+\frac{xy}{z}\ge2z\end{cases}}\)

Cộng theo vế rồi thu gọn ta có:\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\)

BĐT được chứng minh nên BĐT đầu cũng đã được chứng minh