K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

\(\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}\le1-\frac{1}{2\sqrt{ab}}+\frac{1}{ab}\)

Ta có:\(4=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le2\Rightarrow\frac{1}{\sqrt{ab}}\ge2\)

Đặt \(x=\frac{1}{\sqrt{ab}}\ge2\Rightarrow A=1-\frac{a}{2}+a^2\) đạo hàm  phát ra ngay nè <3 

8 tháng 8 2020

Cach khac: a+b>= 2 căn ab => 4 >= 2 căn ab => 4>= ab

\(A=\left(1-\frac{1}{a}\right).\left(1-\frac{1}{b}\right)=1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}\)

Ta có: \(1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}-\frac{1}{4}\)

\(=\frac{ab-4}{ab}-\frac{ab-4}{4ab}\left(a+b=4\right)\)

\(=\left(ab-4\right).\frac{3}{4}ab\le0\left(a,b>0;4\ge ab\right)\)

\(\Rightarrow A=1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}\le\frac{1}{4}\)

Dấu = xr khi a=b=4/2=2

Vậy Max A=1/4 đạt tại a=b=2

31 tháng 8 2020

Xét bđt sau :\(\left(a+b^3\right)\left(m+n\right)\ge\left(\sqrt{am}+\sqrt{b^3n}\right)^2\)(đúng theo bunhia nhé)

Chon \(m=a;n=\frac{1}{b}\)khi đó :

\(\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(\sqrt{a.a}+\sqrt{b^3.\frac{1}{b}}\right)^2\)

\(< =>\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2\)

\(< =>a+b^3\ge\frac{\left(a+b\right)^2}{\frac{1}{a}+b}=\frac{a\left(a+b\right)^2}{1+ab}\)

Suy ra \(\frac{1}{a+b^3}\le\frac{1+ab}{a\left(a+b\right)^2}\)(*)

Bằng cách chứng minh tương tự ta được :\(\frac{1}{a^3+b}\le\frac{1+ab}{b\left(a+b\right)^2}\)(**)

Từ (*) và (**) suy ra : \(\frac{1}{a+b^3}+\frac{1}{a^3+b}\le\frac{1+ab}{a\left(a+b\right)^2}+\frac{1+ab}{b\left(a+b\right)^2}\)

\(=\frac{1}{\left(a+b\right)^2}\left(\frac{1+ab}{a}+\frac{1+ab}{b}\right)=\frac{1}{\left(a+b\right)^2}\left(\frac{1}{a}+a+\frac{1}{b}+b\right)\)

\(=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{\left(a+b\right)^2}=\frac{\frac{1}{a}+\frac{1}{b}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{\frac{a+b}{ab}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\)

Khi đó bài toán trở thành tìm GTLN của biểu thức :

\(A\le S=\left(a+b\right)\left(\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\right)-\frac{1}{ab}=\frac{a+b}{ab\left(a+b\right)}+\frac{a+b}{a+b}-\frac{1}{ab}\)

\(=\frac{1}{ab}+1-\frac{1}{ab}=1\)

Vậy \(A_{max}=1\)đạt được khi ...

chuyên KHTN 2017 ?

23 tháng 4 2018

Áp dụng BĐT Bunyakovsky:

\(\left(a+b^3\right)\left(a+\dfrac{1}{b}\right)\ge\left(a+b\right)^2\);\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\)

\(\Rightarrow VT\le\left(a+b\right)\left[\dfrac{a+\dfrac{1}{b}}{\left(a+b\right)^2}+\dfrac{b+\dfrac{1}{a}}{\left(a+b\right)^2}\right]-\dfrac{1}{ab}\)

\(=\dfrac{a+b+\dfrac{1}{a}+\dfrac{1}{b}}{a+b}-\dfrac{1}{ab}=1\)

Dấu = xảy ra khi a=b=1

6 tháng 7 2020

Ta có: \(2(1-\text{A})=2\Big[1- \left( a+b \right) \left(\frac{1}{a+b^3}+ \frac{1}{a^3+b}\right) +{\frac {1}{ab}}\Big] \)

\(={\frac { \left( {a}^{2}+{b}^{2} \right) \left( a-b \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) ab}}+{\frac {{a}^{ 3} \left( b+1 \right) ^{2} \left( b-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) b}}+{\frac {{b}^{3} \left( a+1 \right) ^{2} \left( a-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) a}}+\,{\frac {2 \left( ab-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) }}\geq 0\)

Đẳng thức xảy ra khi $a=b.$

Bài toán chỉ có thế hehe

12 tháng 4 2020

Áp dụng BĐT Bunhiacopski ta có:

\(\left(a^3+b\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2;\left(b^3+a\right)\left(\frac{1}{b}+a\right)\ge\left(a+b\right)^2\)

\(\Rightarrow\frac{a+b}{a^3+b}\le\frac{\frac{1}{a}+b}{a+b};\frac{a+b}{b^3+a}\le\frac{\frac{1}{b}+a}{a+b}\)

\(\Leftrightarrow M\le\frac{\frac{1}{a}+b}{a+b}+\frac{\frac{1}{b}+a}{a+b}-\frac{1}{ab}=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{a+b}-\frac{1}{ab}\)

\(=\frac{ab\left(a+b\right)+a+b-\left(a+b\right)}{ab\left(a+b\right)}=1\)

Dấu "=" xảy ra tại a=b=1

17 tháng 4 2019

\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\)

\(=\frac{1}{a^2+b^2+2a+2}+\frac{1}{b^2+c^2+2b+2}+\frac{1}{c^2+a^2+2c+2}\)

\(\le\frac{1}{2ab+2a+2}+\frac{1}{2bc+2b+2}+\frac{1}{2ac+2c+2}\)

\(=\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{1}{2}\)

\("="\Leftrightarrow a=b=c=1\)

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

15 tháng 4 2020

chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:

\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)

\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)

\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)

tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)

cộng theo vế của bđt trên ta được

\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)

Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị