K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(\frac{2\left(Σab\right)}{Σa^2}\le\frac{2\left(Σa^2\right)}{a^2}=2\)

tuc la can cm \(Σ\frac{a}{b+c}\le\frac{7}{2}-2=\frac{3}{2}\)

Nguoc dau voi BDT Nesbitt

vay BDT sai ko xay ra dau = maybe :3

15 tháng 7 2017

Bất đẳng thức này mà ko loạn dấu thì tự làm đc r. Nhưng vế trước>=3/2, vế sau<=2 quá loạn dấu

25 tháng 6 2021

A B' C B C' K y x b c D H N A/2

- Dựng phân giác AD của góc A . Sau đó dựng BB' và CC' vuông góc với AD 

- Đặt BB' = x , CC' = y . Ta có :

+) \(\Delta ABB'\)cân tại A \(sin\frac{A}{2}=\frac{x}{2c}\)

+) \(\Delta ACC'\)cân tại A \(sin\frac{A}{2}=\frac{y}{2b}\)

\(\Rightarrow sin^2\frac{A}{2}=\frac{xy}{4bc}\)

Để cm(1) , ta cần cm : \(xy\le a^2\)

+) Trong tam giác BHD vuông tại H ta có : \(BH\le CD\)hay \(\frac{x}{2}\le BD\)

+) Trong tam giác CKD vuông tại K ta có : \(CK\le CH\)hay \(\frac{y}{2}\le CD\)

\(\Rightarrow a=BD+CD\ge\frac{x+y}{2}\ge\sqrt{xy}\)

\(\Rightarrow a^2\ge xy\left(đpcm\right)\)

25 tháng 6 2021

A B C D E F

Kẻ phân giác AD của tam giác ABC (D nằm trên đoạn BC)

Từ B,C kẻ các đường vuông góc với đường thẳng AD tại E,F

Khi đó ta có: \(\sin\widehat{BAE}=\frac{BE}{AB}=\frac{BE}{c}\) ; \(\sin\widehat{FAC}=\frac{CF}{AC}=\frac{CF}{b}\)

Mà \(\sin\frac{\widehat{A}}{2}=\sin\widehat{BAE}=\sin\widehat{FAC}=\frac{BE}{c}=\frac{CF}{b}=\frac{BE+CF}{b+c}\)

Ta thấy \(\hept{\begin{cases}BE\le BD\\CF\le CD\end{cases}}\Rightarrow BE+CF\le BD+CD=BC\)

Lại có theo bất đẳng thức Cauchy: \(b+c\ge2\sqrt{bc}\)

\(\Rightarrow\sin\frac{\widehat{A}}{2}=\frac{BE+CF}{b+c}\le\frac{BC}{2\sqrt{bc}}=\frac{a}{2\sqrt{bc}}\)

Dấu "=" xảy ra khi tam giác ABC cân tại A

12 tháng 6 2020

Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)

\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)

Đẳng thức xảy ra khi a = b = c = 1

26 tháng 9 2019

Bài này mình gặp rất nhiều khó khăn khi biến đổi, và vì biểu thức quá dài nên mình phải dùng ký hiệu \(\Sigma_{sym}\), có thể sẽ gặp phải những sai sót-> sai cả bài, do đó bài làm bên dưới chỉ nêu hướng làm thôi (quy đồng).

Nhân hai vế của BĐT cho \(2\left(ab+bc+ca\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\) BĐT cần chứng minh tương đương:

\(\Leftrightarrow\)\(3\Sigma_{sym}a^3b^3c+\Sigma_{sym}ab^4c^2\ge3\Sigma_{sym}a^5bc+\Sigma_{sym}a^4b^3\)

\(\Leftrightarrow3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)+\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\)

Do \(3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)\ge0\) theo định lí Muirhead.

Do đó ta sẽ chứng minh: \(\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\). Và chịu:(

17 tháng 2 2020

Không mất tính tổng quát, ta giả sử c là số nhỏ nhất.

Đặt \(f\left(a;b;c\right)=VP-VT\) và \(t=\frac{a+b}{2}\)

Trước hết ta chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\).

Xét hiệu hai vế và nó tương đương ta thấy nó \(\ge0\) do giả sử:

Vậy ta chỉ cần chứng minh \(f\left(t;t;c\right)\ge0\Leftrightarrow\frac{\left(c-t\right)^2\left(3c^2+3ct+2t^2\right)}{2t\left(c+t\right)\left(2c+t\right)\left(c^2+t^2\right)}\ge0\) (đúng)

Vậy ta có đpcm.

P/s: Lần sau cho đề đẹp đẹp tí, kiểu này quy đồng mà không có máy tính thì cực chetme:(

10 tháng 11 2019

\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{abc^2}{ab}}=2c\)

Tương tự và cộng lại có đpcm

Dấu "=" xảy ra khi \(a=b=c\) hay tam giác đều

cho đề này:

cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)