K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

 \(BDT\Leftrightarrow\frac{\sqrt{a-9}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-1}}{c}\le\frac{11}{12}\)

Áp dụng BĐT AM-GM ta có: 

\(VT=\frac{\sqrt{9\left(a-9\right)}}{3a}+\frac{\sqrt{4\left(b-4\right)}}{2b}+\frac{\sqrt{1\left(c-1\right)}}{c}\)

\(\le\frac{\frac{9+\left(a-9\right)}{2}}{3a}+\frac{\frac{4+\left(b-4\right)}{2}}{2b}+\frac{\frac{1+\left(c-1\right)}{2}}{c}\)

\(=\frac{1}{6}+\frac{1}{4}+\frac{1}{2}=\frac{11}{12}=VP\)

Dấu "=" khi \(a=18;b=8;c=2\)

Gợi ý: Mấy bài dạng này bạn tìm một hằng số để nhân thêm vào để rút gọn mất các biến a,b,c nhé.

2 tháng 12 2016

câu bất này dễ mà Việt Anh

3 tháng 12 2016

nhưng mình kém lắm

ko làm đc

giúp đi

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:
Vì $ab+bc+ac=1$ nên:

$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$

$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$

$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$

Do đó, áp dụng BĐT AM-GM:

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
Vì $ab+bc+ac=1$ nên:

$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$

$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$

$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$

Do đó, áp dụng BĐT AM-GM:

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

22 tháng 4 2020

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)

Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)

18 tháng 9 2017

 a) có nhiều cách chứng minh 
P = a/(b+c) + b/(c+a) + c/(a+b) 
P + 3 = 1+ a/(b+c) + 1+ b/(c+a) + 1+ c/(a+b) 
P + 3 = (a+b+c)/(b+c) + (a+b+c)/(b+c) + (a+b+c)/(c+a) 
P + 3 = (a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] (*) 

ad bđt cô si cho 3 số: 
2(a+b+c) = (a+b) + (b+c) + (c+a) ≥ 3.³√(a+b)(b+c)(c+a) 
1/(b+c) + 1/(c+a) + 1/(a+b) ≥ 3.³√1/(a+b)(b+c)(c+a) 

nhân lại vế theo vế 2 bđt: 2(a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] ≥ 9 
=> P + 3 ≥ 9/2 => P ≥ 3/2 (đpcm) ; dấu "=" khi a = b = c 
- - - 
cách khác: P = a/(b+c) + b/(c+a) + c/(a+b) 
M = b/(b+c) + c/(c+a) + a/(a+b) 
N = c/(b+c) + a/(c+a) + b/(a+b) 

Thấy: M + N = 3 
P + M = (a+b)/(b+c) + (b+c)/(c+a) + (c+a)/(a+b) ≥ 3 (cô si cho 3 số) 
P + N = (a+c)/(b+c) + (b+a)/(c+a) + (c+b)/(a+b) ≥ 3 (cô si) 

=> 2P + M + N ≥ 6 => 2P + 3 ≥ 6 => P ≥ 3/2 (đpcm) ; đẳng thức khi a = b = c 
-------------- 
b) ad bđt Bunhia: 1² = [2.(2x) + 1.y]² ≤ (2²+1²)(4x²+y²) => 4x² + y² ≥ 1/5 (đpcm) 
dấu "=" khi 2x/2 = y/1 và 4x+y = 1 <=> x = y = 1/5 
- - - 
Có thể không cần Bunhia, ad bđt a² + b² ≥ 2ab (*) 
(*) quá hiển nhiên từ (a-b)² ≥ 0 
x² + 1/25 ≥ 2x/5 <=> 4x² ≥ 8x/5 - 4/25 (1*) 
y² + 1/25 ≥ 2y/5 <=> y² ≥ 2y/5 - 1/25 (2*) 

lấy (1*)+(2*) => 4x²+y² ≥ 8x/5+2y/5 - 4/25 - 1/25 = 2(4x+y)/5 - 5/25 = 1/5 (đpcm) 
dấu "=" khi x = y = 1/5 
------------- 
c) ad bđt cô si cho 3 số: 
ab/c + bc/a + ca/b ≥ 3.³√(ab/c)(bc/a)(ca/b) = 3.³√abc 
- - - - 
nếu như đề đã ghi, thay a = b = c = 2 thì VT = 2+2+2 = 6 < VP = 2.2.2 = 8  

19 tháng 9 2017

*C/m: \(9(a+b)(b+c)(c+a)\ge8(a+b+c)(ab+bc+ac)\)

\(\Leftrightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2-6abc\ge0\)

\(VT=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2\ge6\sqrt[6]{\left(abc\right)^6}=VP\)

Khi \(a=b=c\)

# Dôn lùng đợi chiều tối về t giải phần căn bậc 4 kia cho :)

19 tháng 1 2023

\(ab+bc+ca\le1\)

\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)

\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)

Ta có \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Leftrightarrow\left(a^2-2a+1\right)\left(a^2+a+1\right)\ge0\)

\(\Leftrightarrow a^4-a^3-a+1\ge0\)

\(\Leftrightarrow a^4-a^3+1\ge a\)

\(\Leftrightarrow a^4-a^3+ab+2\ge a+ab+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự \(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)

             \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(=\sqrt{3\left(\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c=1

19 tháng 3 2020

Đoán xem

5 tháng 12 2016

Ta có

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(\Leftrightarrow\frac{2a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+b.\frac{1}{\sqrt{\left(b+a\right)\left(b+c\right)}}+c.\frac{1}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+2b.\frac{1}{\sqrt{\left(a+b\right).4.\left(b+c\right)}}+2c.\frac{1}{\sqrt{\left(a+c\right).4.\left(b+c\right)}}\)

\(\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{4\left(b+c\right)}+\frac{c}{a+c}+\frac{c}{4\left(b+c\right)}\)

\(=1+1+\frac{1}{4}=\frac{9}{4}\)

5 tháng 12 2016

Xem lại đề nhé