K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

ta có bđt phụ ,,,,,,,,  x2+y2+z2 >= xy+yz+zx

thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương

31 tháng 1 2016

\(\frac{3}{xy+yz+xz}+\frac{3}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{3}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{3}\right)^2}{x^2+y^2+z^2+2xy+yz+xz}=\frac{\left(\sqrt{6}+\sqrt{3}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{3}\right)^2\)

(*) ta CM :\(\left(\sqrt{6}+\sqrt{3}\right)^2>14\)

TA có \(\left(\sqrt{6}+\sqrt{3}\right)^{^2}=6+3+2\sqrt{18}=9+6\sqrt{2}>9+5=14\)

=> \(\frac{3}{xy+yz+xz}+\frac{3}{x^2+y^2+z^2}>14\)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

23 tháng 8 2021

vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz

x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)

theo bdt cosi ta có:

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)

\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra 

\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)

ta giả sử:

\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)

suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng

hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)

em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh

23 tháng 8 2021

bạn ơi đk: 1 trong 3 số x,y,z là >=0 còn lại là >0 thì nó vẫn ra điều trên

22 tháng 8 2016

Sử dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\right)=3\left(x^2+y^2+z^2\right)=3\)

\(\Rightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge\sqrt{3}\)

20 tháng 12 2016

\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

22 tháng 12 2016

=2/xy+yz+zx+(1/xy+yz+zx+2/x2+y2+z2)>=6/(x+y+z)2+8/(x+y+z)2=6+8=14     :ap dung xy+yz+zx=<(x+y+z)2/3 va :1/a+1/b>=4/a+b         dau=xay ra<=>x=y=z=1/3

5 tháng 2 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

5 tháng 2 2020

nhầm sửa x = y = z = 1 nha

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

29 tháng 1 2021

Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)

CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)

\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)

Từ (1); (2) và (3) =>A =  \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)

      Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)

cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)