K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

22 tháng 11 2023

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

NV
29 tháng 11 2018

\(0< x,y< 1\Rightarrow\dfrac{x}{1-x}+\dfrac{y}{1-y}>0\)

\(\left(\dfrac{x}{1-x}+\dfrac{y}{1-y}\right)^{2018}=1\Rightarrow\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\)

\(\Rightarrow x-xy+y-xy=1-x-y+xy\Rightarrow2\left(x+y\right)-1=3xy\) (1)

\(A=\left(x+y+\sqrt{\left(x+y\right)^2-3xy}\right)^{2019}=\left(x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\right)^{2019}\)

\(A=\left(x+y+\sqrt{\left(x+y-1\right)^2}\right)^{2019}=\left(x+y+\left|x+y-1\right|\right)^{2019}\)

Ta xét dấu \(x+y-1\) để phá trị tuyệt đối:

Từ (1) ta cũng có \(2x-1=3xy-2y=y\left(3x-2\right)\Rightarrow y=\dfrac{2x-1}{3x-2}\)

\(0< y< 1\Rightarrow0< \dfrac{2x-1}{3x-2}< 1\Rightarrow0< x< \dfrac{1}{2}\)

\(x+y-1=x+\dfrac{2x-1}{3x-2}-1=\dfrac{3x^2-3x+1}{3x-2}< 0\) \(\forall x:0< x< \dfrac{1}{2}\)

\(\Rightarrow\left|x+y-1\right|=1-x-y\)

\(\Rightarrow A=\left(x+y+1-x-y\right)^{2019}=1^{2019}=1\)

21 tháng 6 2023

a)

Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$

Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$

Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.

Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:

$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$

Vậy kết quả là $E=-\frac{5}{3}$.

21 tháng 6 2023
NV
7 tháng 8 2021

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673