K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

4. 

Xét biểu thức : \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{k-\left(k-1\right)-1}{k\left(k-1\right)}\right)=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{1}{k-1}-\frac{1}{k}-\frac{1}{k\left(k-1\right)}\right)=\left(1+\frac{1}{\left(k-1\right)}-\frac{1}{k}\right)^2\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|1+\frac{1}{k-1}-\frac{1}{k}\right|\)

Áp dụng : \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1}-\frac{1}{2}\)

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)

...............................................................

\(\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}=1+\frac{1}{2015}-\frac{1}{2016}\)

Cộng vế các đẳng thức trên được : \(B=2016-\frac{1}{2016}\)

19 tháng 5 2016

ý thứ 2 là 8/7 chứ không phải 8/8 các bạn nhé. M đánh nhầm chữ

13 tháng 3 2021

Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)

hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

3 tháng 4 2020

helloo

3 tháng 4 2020

Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

Khi đó BĐT <=>

 \(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)

<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)

<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)

<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)

Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)

<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)

<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng

Khi đó (1) <=> 

\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\) 

<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)

Áp dụng buniacopxki cho vế phải ta có 

\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)

                                                                                                       \(=\sqrt{2\left(x+y+z\right)}\)

=> BĐT được CM

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

16 tháng 6 2019

Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)

Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)

Khi đó 

\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)

Dấu bằng xảy ra khi x=y=z=1

Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1

19 tháng 5 2020

dễ vãi mà ko giải đc NGU

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Ta có:

\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

Hoàn toàn tương tự:

\(y^2+1=(y+z)(y+x); z^2+1=(z+x)(z+y)\)

Do đó:

\(\text{VT}=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=\frac{1}{(x+y)(x+z)}+\frac{1}{(y+z)(y+x)}+\frac{1}{(z+x)(z+y)}=\frac{2(x+y+z)}{(x+y)(y+z)(x+z)}(*)\)

----------------------------------------------------

\(\text{VP}=\frac{2}{3}\left(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\right)^3=\frac{2}{3}\left(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+x)(y+z)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\right)^3\)

\(=\frac{2}{3}.\frac{(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^3}{\sqrt{(x+y)(y+z)(x+z)}^3}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^2\leq (x+y+z)(xy+xz+yx+yz+zx+zy)=2(x+y+z)\)

\(\Rightarrow (x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^3\leq \sqrt{2(x+y+z)}^3(2)\)

\((x+y)(y+z)(x+z)=(x+y+z)(xy+yz+xz)-xyz\geq (x+y+z)(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}\) (AM-GM)

\(=\frac{8}{9}(x+y+z)(xy+yz+xz)=\frac{8}{9}(x+y+z)\)

\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}^3\geq (x+y)(y+z)(x+z)\sqrt{\frac{8}{9}(x+y+z)}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VP}\leq \frac{2}{3}.\frac{\sqrt{2(x+y+z)}^3}{(x+y)(y+z)(x+z)\sqrt{\frac{8}{9}(x+y+z)}}=\frac{2(x+y+z)}{(x+y)(y+z)(x+z)}(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\geq \text{VP}\). Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

28 tháng 5 2019

Sao có dòng 6 từ dưới lên vậy ạ?